一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對學(xué)生來講,將有助于他們正確認(rèn)識馬克思主義,運用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強的現(xiàn)實指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進而運用馬克思主義哲學(xué)的基本觀點分析和解決生活實踐中的問題。3.實踐的觀點是馬克思主義哲學(xué)的首要和基本的觀點,培養(yǎng)學(xué)生在實踐中分析問題和解決問題的能力,進而培養(yǎng)學(xué)生在實踐活動中的科學(xué)探索精神和革命批判精神。
4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標(biāo)為(0,5/3).
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
(三)實踐性數(shù)學(xué)是一種工具,一種將自然、社會運動現(xiàn)象法則化、簡約化的工具。數(shù)學(xué)學(xué)習(xí)的最重要的成果就是學(xué)會建立數(shù)學(xué)模型,用以解決實際問題。因此,在這節(jié)課中,大量地創(chuàng)設(shè)條件,讓學(xué)生把課堂中所學(xué)的知識和方法應(yīng)用于生活實際之中,“學(xué)以致用”,讓學(xué)生切實感受到生活中處處有數(shù)學(xué)。如上課伊始的猜冰箱,課中觀察玩具、用品,給熊貓照相等,都采用了貼近學(xué)生生活的材料,旨在聯(lián)系生活,開闊視野,同時延伸學(xué)習(xí),使學(xué)生能從看到的物體的某一個面,聯(lián)想到整個物體的形狀,培養(yǎng)其觀察立體實物的能力,建立初步的空間觀念,發(fā)展形象思維。本課的所有教學(xué)環(huán)節(jié)都注重借助學(xué)生生活中常見的事物為知識載體,意在讓學(xué)生感悟到“數(shù)學(xué)就在我們身邊,生活離不開數(shù)學(xué)”。二、需進一步探究的問題“觀察物體”的內(nèi)容主要是對簡單物體正面、側(cè)面、上面形狀的觀察,因此本節(jié)課選擇了大量生活中的實物讓學(xué)生觀察,旨在培養(yǎng)學(xué)生的空間觀念。
三、估算度的把握。《標(biāo)準(zhǔn)》在計算教學(xué)方面強調(diào)的內(nèi)容之一是重視估算,培養(yǎng)估算意識。我們認(rèn)為重視估算,就是對學(xué)生數(shù)感的培養(yǎng),具體體現(xiàn)在能估計運算的結(jié)果,并對結(jié)果的合理性作出解釋。本節(jié)課的設(shè)計就是讓學(xué)生在具體情境中,學(xué)會兩種估算方法,結(jié)合具體情況作出合理解釋。四、教會學(xué)生單元整理與復(fù)習(xí)的方法,使學(xué)生終身受益。我們知道授人以漁而非魚的道理。在本節(jié)課中,老師設(shè)計了引導(dǎo)學(xué)生學(xué)會整理與復(fù)習(xí)的方法,如:帶著問題看書,將算式分類、歸納、總結(jié)出本單元所學(xué)內(nèi)容,計算方法,注意地方,最后進行有針對性的練習(xí)。如果我們的老師從小就有意識地對學(xué)生進行學(xué)習(xí)方法的培養(yǎng),學(xué)生將終身受益。我想我們教學(xué)研討活動就是為了實現(xiàn)教育的最高境界:今天的教是為了明天的不教。
當(dāng)學(xué)生說出估算思路時,老師可以及時適當(dāng)進行賞識性的表揚。與此同時,教師對各種估算方法都不急于評價,而是積極引導(dǎo)學(xué)生采用多種算法。在劉兼教授的訪談錄中,曾經(jīng)有這么一句話:在提倡算法多樣性的同時,老師要不要提出一種最好的解法呢?所謂最好的方法,要和學(xué)生的個性結(jié)合起來,沒有適合全體學(xué)生的方法。每個學(xué)生的學(xué)習(xí)方式、思維方式都是獨特的,我們要尊重學(xué)生自己的選擇,不能以一個或一批學(xué)生的思維準(zhǔn)則來規(guī)定全體學(xué)生必須采用的所謂最好的方法。因此,教學(xué)中我是這樣引導(dǎo)學(xué)生的:你喜歡用哪一種方法?并說說你喜歡的理由。這樣不僅尊重了學(xué)生個性的思維方法,還培養(yǎng)了學(xué)生的個性發(fā)展。探究新知后,我安排有層次性的練習(xí),讓學(xué)生在練習(xí)中鞏固估算方法,培養(yǎng)估算意識,增強估算信心。(三)、鞏固提高1、基本練習(xí)“學(xué)以致用”,學(xué)習(xí)新知識后的練習(xí)是學(xué)生內(nèi)化知識的主要環(huán)節(jié),也是學(xué)生鞏固估算方法的環(huán)節(jié)。
(四)、課堂總結(jié)、體驗成功引導(dǎo)學(xué)生對所學(xué)知識、學(xué)習(xí)方法、學(xué)習(xí)結(jié)果、情感等進行全面總結(jié),讓學(xué)生體驗學(xué)習(xí)的成功感,同時,進一步系統(tǒng)、完善知識結(jié)構(gòu)??傊菊n的教學(xué)設(shè)計力求體現(xiàn)“以學(xué)生為本”的教學(xué)理念,具體體現(xiàn)在以下幾個方面:(一)、創(chuàng)設(shè)生動的情景,激發(fā)探索的樂趣,讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系。課的引入以一幅學(xué)生經(jīng)常接觸的,喜聞樂見的購買玩具這一題材為切入點。在練習(xí)設(shè)計中,改變枯燥抽象的數(shù)字計算練習(xí),選取了一組寓有童趣的素材。它們以豐富多彩的呈現(xiàn)方式深深地吸引著學(xué)生,使他們認(rèn)識到現(xiàn)實生活中蘊含著大量的數(shù)學(xué)信息,使學(xué)生感到有趣、有挑戰(zhàn)性,激發(fā)他們好奇,好勝的心理,從而誘發(fā)他們?nèi)ブ鲃訉で蠼鉀Q問題的策略,同時體驗到數(shù)學(xué)與生活的聯(lián)系。
(一)創(chuàng)設(shè)情境,提出問題:學(xué)生的學(xué)習(xí)動機和求知欲不會自然涌現(xiàn),它取決于教師所創(chuàng)設(shè)的學(xué)習(xí)情境,而興趣是最好的老師,因此,在課的一開始,我設(shè)計了“今天我們再去街心公園看一看”這一情境:出示情境圖:你看到了什么信息,你能提出什么數(shù)學(xué)問題?(板書)學(xué)生提出很多問題。設(shè)計意圖:數(shù)學(xué)來源于生活,有趣的生活情境,激發(fā)學(xué)生好奇心和強烈的求知欲,讓學(xué)生在生動具體的情境中學(xué)習(xí)數(shù)學(xué),從而使教材與學(xué)生之間建立相互包容、相互激發(fā)的關(guān)系。讓學(xué)生既認(rèn)識了自身,又大膽而自然地提出猜想。(二)、探索新知解決問題“教師為主導(dǎo),學(xué)生為主體,探究為主線”的三為主原則“保護環(huán)境”花壇一共用了多少盆花?怎樣列式?
(二)創(chuàng)設(shè)情境,探索新知。1、創(chuàng)設(shè)情境,激發(fā)興趣。小白兔和小熊要坐公交車去公園,他們來到公交公司,先后看到公交公司有一邊說一邊課件出示課件,請同學(xué)們仔細(xì)觀察,把你從圖上看到的物品和讀出的數(shù)據(jù)告訴老師和其他同學(xué)。你能根據(jù)這些信息提出不同的數(shù)學(xué)問題嗎?再從同學(xué)們提出的眾多問題中選擇兩個具有代表性的問題來列式和計算。課件出示主題圖下列兩個問題:指名說出兩個問題的算式分別是什么,明確45 + 30和45 + 3是兩位數(shù)加一位數(shù)和兩位數(shù)加整十?dāng)?shù)的加法算式,引出課題——兩位數(shù)加一位數(shù)和整十?dāng)?shù)(不進位)這一層次從學(xué)生熟悉的生活情境出發(fā),選擇學(xué)生熟悉的旅游,讓學(xué)生自己發(fā)現(xiàn)、提出有關(guān)的數(shù)學(xué)問題,從而主動的解決問題。這里通過創(chuàng)造出生動的生活情境來提取例題,符合學(xué)生的年齡、認(rèn)知特征,既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生感受到數(shù)學(xué)與生活的密切聯(lián)系,容易為學(xué)生所感知,所接受。
3、教學(xué)目標(biāo)及教學(xué)重點難點根據(jù)課標(biāo)的要求,介于教材的特點和學(xué)生實際,我確定本節(jié)課的教學(xué)目標(biāo)是:(1)、知識與技能:讓學(xué)生經(jīng)歷探索兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)的計算方法的過程,掌握計算方法,能正確地口算。(2)、過程與方法:讓學(xué)生經(jīng)歷自主探索、動手操作、合作交流等方式獲得新知的過程,積累數(shù)學(xué)活動的經(jīng)驗,體會數(shù)學(xué)知識與日常生活的密切聯(lián)系,增強應(yīng)用意識。 (3)、情感態(tài)度與價值觀:進一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,以及積極思考、動手實踐并與同學(xué)合作學(xué)習(xí)的態(tài)度。其中,掌握兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)的口算方法是重點,理解算理,把握兩位數(shù)減一位數(shù)與兩位數(shù)減整十?dāng)?shù)在計算過程中的相同點與不同點是難點。
一、說教材:本課時主要的內(nèi)容就是讓學(xué)生在情境中掌握兩位數(shù)加兩位數(shù)的進位加法計算,讓學(xué)生通過嘗試和探索出多種算法,體驗多種算法,然后比較出最好的算法。教學(xué)目標(biāo):1、通過具體的情境使學(xué)生更一步的理解加法的意義和提高學(xué)生的估算意識。2、通過學(xué)生的合作學(xué)習(xí)從而能探討出多種計算兩位數(shù)減兩位退位減法的方法。3、培養(yǎng)學(xué)生的數(shù)學(xué)口語表達(dá)能力,提高學(xué)生的學(xué)習(xí)興趣。4、掌握兩位數(shù)加兩位數(shù)(進位加)豎式的寫法。重點:(1)通過學(xué)生的合作學(xué)習(xí)從而能探討出多種計算兩位數(shù)減兩位退位減法的方法。(2)掌握筆算加法的計算法則。難點:對多樣化算法進行優(yōu)化,達(dá)到正確完成計算。發(fā)展學(xué)生的估算意識、和探究意識和解決實際問題的能力。二、說教法:組織學(xué)生在前面計算的基礎(chǔ)上,自主探索出兩位數(shù)加兩位(進位加)的計算方法,并通過交流、討論,達(dá)到對算法的優(yōu)化,在通過“試一試”、“算一算”、“想一想”等形式達(dá)到知識的掌握。
說教材:(1)教學(xué)內(nèi)容:人民教育出版社出版的九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書第三冊中的第16—17頁的例1及“做一做”,練習(xí)三1、2、3、4、題。(2)教材分析(教材的前后聯(lián)系,地位作用及編排意圖):兩位數(shù)減兩位數(shù)是學(xué)生學(xué)習(xí)筆算減法的開始,也是以后學(xué)習(xí)多位筆算減法的基礎(chǔ)。由于筆算減法是在口算減法的基礎(chǔ)上進行教學(xué)的,所以教材先安排了口算整十?dāng)?shù)減整十?dāng)?shù)、兩位數(shù)減整十?dāng)?shù)、兩位數(shù)減一位數(shù)的復(fù)習(xí),為理解筆算做好準(zhǔn)備。教材由兩位數(shù)減一位數(shù)的不退位減法口算引出兩位數(shù)減一位數(shù)的不退位減法的筆算。說明這種口算題也可以寫成豎式,用筆算。然后,對照直觀圖說明計算時要把相同數(shù)位對齊,從個位減起的計算順序。(3)教學(xué)目標(biāo):根據(jù)教材的編排意圖以及學(xué)生的實際,我確定本課的教學(xué)目標(biāo)是:使學(xué)生理解筆算兩位數(shù)減兩位數(shù)的算理,掌握豎式的寫法和計算方法,并能正確的筆算。培養(yǎng)學(xué)生知識遷移的能力和口頭表達(dá)能力,培養(yǎng)學(xué)生仔細(xì)計算的良好學(xué)習(xí)習(xí)慣。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。