我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過(guò)研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問(wèn)題和數(shù)學(xué)問(wèn)題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過(guò)程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過(guò)一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過(guò)10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開(kāi)始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語(yǔ)云:“勤學(xué)如春起之苗,不見(jiàn)其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問(wèn)題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見(jiàn)部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
4.寫出下列隨機(jī)變量可能取的值,并說(shuō)明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬(wàn)元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問(wèn)題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過(guò)數(shù)字來(lái)反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為_(kāi)_______.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問(wèn)第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
溫故知新 1.離散型隨機(jī)變量的定義可能取值為有限個(gè)或可以一一列舉的隨機(jī)變量,我們稱為離散型隨機(jī)變量.通常用大寫英文字母表示隨機(jī)變量,例如X,Y,Z;用小寫英文字母表示隨機(jī)變量的取值,例如x,y,z.隨機(jī)變量的特點(diǎn): 試驗(yàn)之前可以判斷其可能出現(xiàn)的所有值,在試驗(yàn)之前不可能確定取何值;可以用數(shù)字表示2、隨機(jī)變量的分類①離散型隨機(jī)變量:X的取值可一、一列出;②連續(xù)型隨機(jī)變量:X可以取某個(gè)區(qū)間內(nèi)的一切值隨機(jī)變量將隨機(jī)事件的結(jié)果數(shù)量化.3、古典概型:①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);②每個(gè)基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點(diǎn)數(shù)X有哪些值?取每個(gè)值的概率是多少? 因?yàn)閄取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.對(duì)稱性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
【學(xué)習(xí)目標(biāo)】1.知識(shí)與技能:知道氧氣的制取及檢驗(yàn)方法,復(fù)習(xí)鞏固氧氣的相關(guān)性質(zhì)。2.過(guò)程與方法:通過(guò)“探究能使帶火星木條復(fù)燃所需氧氣的最低體積分?jǐn)?shù)”的探究性學(xué)習(xí),學(xué)習(xí)科學(xué)探究的基本方法。3.情感態(tài)度與價(jià)值觀:提高實(shí)驗(yàn)設(shè)計(jì)的能力和合作意識(shí),復(fù)習(xí)鞏固相關(guān)的基本操作,培養(yǎng)學(xué)習(xí)化學(xué)的興趣?!緦W(xué)習(xí)重點(diǎn)】氧氣的實(shí)驗(yàn)室制取操作步驟和性質(zhì)檢驗(yàn)?!緦W(xué)習(xí)難點(diǎn)】實(shí)驗(yàn)操作過(guò)程中的注意事項(xiàng)?!菊n前準(zhǔn)備】《精英新課堂》:預(yù)習(xí)學(xué)生用書(shū)的“早預(yù)習(xí)先起步”?!睹麕煖y(cè)控》:預(yù)習(xí)贈(zèng)送的《提分寶典》。情景導(dǎo)入 生成問(wèn)題1.復(fù)習(xí)引入:實(shí)驗(yàn)室用高錳酸鉀制取氧氣的反應(yīng)原理是什么?操作步驟有哪些?2.明確學(xué)習(xí)目標(biāo),由學(xué)生對(duì)學(xué)習(xí)目標(biāo)進(jìn)行解讀。合作探究 生成能力閱讀課本P45~P46的內(nèi)容。提出問(wèn)題:實(shí)驗(yàn)室加熱高錳酸鉀制取氧氣的實(shí)驗(yàn)中,使用了哪些儀器?哪部分是氣體發(fā)生裝置?哪部分是氣體收集裝置?為什么可用排水法收集氣體?討論交流:結(jié)合化學(xué)實(shí)驗(yàn)基本操作和氧氣的性質(zhì)討論歸納。
一、說(shuō)教材:《六月二十七日望湖樓醉書(shū)》是國(guó)家統(tǒng)編教材小學(xué)語(yǔ)文六年級(jí)上冊(cè)第一單元的一首文質(zhì)兼美、情景交融的古詩(shī),作者蘇軾以精煉的文字展現(xiàn)了一場(chǎng)急來(lái)驟去的西湖雨。文章既有寫景的語(yǔ)句,又隱藏人物內(nèi)心活動(dòng),是一篇指導(dǎo)學(xué)生學(xué)習(xí)古詩(shī)很好的范例。1.教材地位:課標(biāo)要求:閱讀詩(shī)歌,大體把握詩(shī)意,想象詩(shī)歌描繪的情景,體會(huì)作品的感情。誦讀優(yōu)秀詩(shī)文,注意通過(guò)語(yǔ)調(diào)、韻律、節(jié)奏等品味作品內(nèi)容和情感。以《六月二十七日望湖樓醉書(shū)》為例的古詩(shī)學(xué)習(xí)課,旨在讓學(xué)生抓住詩(shī)中關(guān)鍵的字詞感受詩(shī)歌的內(nèi)容和情感。同時(shí),以課標(biāo)為準(zhǔn)繩,把教材與學(xué)生生活聯(lián)系起來(lái),將同類型的古詩(shī)進(jìn)行整合。在讀懂《六月二十七日望湖樓醉書(shū)》的基礎(chǔ)上,對(duì)同是寫雨的古詩(shī)進(jìn)行同類拓展,對(duì)于學(xué)生誦讀積累優(yōu)秀詩(shī)文具有一定指導(dǎo)作用。
一、說(shuō)教材《百分?jǐn)?shù)》是九年義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)人教版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)第六單元的教學(xué)內(nèi)容。百分?jǐn)?shù)是在學(xué)過(guò)整數(shù)、小數(shù),特別是分?jǐn)?shù)的意義和應(yīng)用的基礎(chǔ)上進(jìn)行教學(xué)的。本單元教材在編寫上體現(xiàn)從實(shí)際情境中抽象出百分?jǐn)?shù)的過(guò)程。讓學(xué)生體會(huì)引入百分?jǐn)?shù)的必要性和百分?jǐn)?shù)的意義,感受百分?jǐn)?shù)在實(shí)際生活中的應(yīng)用。二、說(shuō)學(xué)情學(xué)生已經(jīng)認(rèn)識(shí)了百分?jǐn)?shù),并掌握了百分?jǐn)?shù)的簡(jiǎn)單計(jì)算和應(yīng)用。生活中存在著較多的百分?jǐn)?shù),學(xué)生在生活中或有所見(jiàn)、或有所聞。如衣服上 80%棉、牛奶純度 100%等等。這些為本節(jié)課的開(kāi)展奠定了生活經(jīng)驗(yàn)基礎(chǔ)。
五、說(shuō)學(xué)情小學(xué)六年級(jí)的學(xué)生已具備初步的邏輯思維能力,但仍以形象思維為主,教材在小學(xué)中年級(jí)的數(shù)學(xué)教學(xué)中,已經(jīng)逐漸借助推理與知識(shí)遷移來(lái)完成,并結(jié)合教材挖掘、創(chuàng)造條件開(kāi)始滲透數(shù)形結(jié)合思想。進(jìn)入中高年級(jí)后,學(xué)生邏輯思維能力已有一定發(fā)展,為了使學(xué)生更直觀的理解知識(shí),同時(shí)又滿足學(xué)生邏輯思維能力的發(fā)展,因此本節(jié)教材在編排上體現(xiàn)了先“數(shù)”后“形”的順序,把形象真正放在“支撐”地位,從而為培養(yǎng)學(xué)生的邏輯能力而服務(wù)。六、說(shuō)教法學(xué)法為了在教學(xué)過(guò)程中充分體現(xiàn)學(xué)生的主體地位和教師的主導(dǎo)作用,本節(jié)采用教師引導(dǎo)和學(xué)生自主學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生積極探索和團(tuán)結(jié)協(xié)作的精神,同時(shí)采用PPT課件直觀形象的演示功能,強(qiáng)化理解,突破重點(diǎn)、難點(diǎn)并調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。1.將問(wèn)題直接呈現(xiàn)在學(xué)生面前,引導(dǎo)學(xué)生對(duì)題目的內(nèi)容進(jìn)行理解,在明確了題目的要求之后,教師把時(shí)間還給學(xué)生,引導(dǎo)學(xué)生自主思考問(wèn)題,通過(guò)具體形象教具的支撐幫助學(xué)生發(fā)展規(guī)律。2.利用小組合作學(xué)習(xí),在合作交流中通過(guò)看一看,議一議,借助直觀教具發(fā)現(xiàn)理解規(guī)律。3.利用微課對(duì)差生進(jìn)行“補(bǔ)學(xué)”。在學(xué)生探究匯報(bào)之后,針對(duì)學(xué)習(xí)有困難的學(xué)生利用微課視頻直觀鞏固知識(shí)。
三、說(shuō)教學(xué)目標(biāo)基于以上對(duì)教材和學(xué)情的分析,我在研讀新課的要求,閱讀文學(xué)作品時(shí)也有著情感體驗(yàn)說(shuō)感知文章的內(nèi)涵,從中獲得對(duì)自然社會(huì)人生的有益啟示。從三維目標(biāo)三方面制定了如下教學(xué)目標(biāo):1.了解作者的生平與新月派詩(shī)歌“三美”主張,把握詩(shī)歌內(nèi)容2.通過(guò)誦讀法、自主合作探究法,多角度體會(huì)詩(shī)歌的語(yǔ)言美,這也是本節(jié)課的重難點(diǎn)。3,理解作者隱藏在文字下深沉的母愛(ài),體會(huì)生命的美好。四、說(shuō)教法學(xué)法教學(xué)的目的所在,正如葉圣陶先生所說(shuō),教是為了不教,學(xué)是為了會(huì)學(xué),教學(xué)中理應(yīng)靈活處理多種教學(xué)方法,因此,我將多媒體輔助教學(xué)法、提問(wèn)法,點(diǎn)撥法的教法與學(xué)生誦讀品味法、圈點(diǎn)勾畫法、自主合作探究法的學(xué)法結(jié)合起來(lái),以求達(dá)到事半功倍的效果。
(4)寫第三間小屋時(shí)作者為什么說(shuō)“在我們的小屋里,住著所有我們認(rèn)識(shí)的人,唯獨(dú)沒(méi)有我們自己”?明確:這是一個(gè)信息高度發(fā)達(dá)的社會(huì),我們能從不同渠道接受各種紛繁復(fù)雜的信息,漸漸,有的人就被這個(gè)信息社會(huì)所同化了,常常隨波逐流,用他人的觀點(diǎn)來(lái)肯定事物的價(jià)值,常常以為眾人所追求的就是他們自己想要的。于是別人的思想、外在的信息代替了他們自己的思想,使自己成為缺乏思想和思考的人,所以說(shuō)“唯獨(dú)沒(méi)有我們自己”。(5)你認(rèn)為在第三間精神小屋中應(yīng)該怎樣“安放我們自身”呢?明確:安放自身需要思考,擁有獨(dú)立的思想。(6)請(qǐng)你結(jié)合日常生活,說(shuō)說(shuō)你是否嘗試過(guò)如此構(gòu)建“精神的三間小屋”?!窘虒W(xué)提示】引導(dǎo)學(xué)生在對(duì)“精神的三間小屋”的理解基礎(chǔ)上來(lái)審視生活,從而達(dá)到反思生活,審視自我精神世界,建構(gòu)自我精神世界的目的。
第三節(jié),把“愛(ài)”比作“四月的花”和“月圓”,表現(xiàn)了愛(ài)的美與莊嚴(yán)。第四節(jié),用“雪化后那片鵝黃”“初放芽的綠”“白蓮”表現(xiàn)了愛(ài)的生命力和純凈。第五節(jié),“一樹(shù)一樹(shù)的花開(kāi)”“燕子呢喃”表現(xiàn)愛(ài)之深,情之切。3.詩(shī)人通過(guò)不同的感官來(lái)描寫“四月”所獨(dú)有的景物,試結(jié)合內(nèi)容進(jìn)行分析。明確:通過(guò)視覺(jué)描寫:“黃昏”“星”“云煙”“花”。通過(guò)聽(tīng)覺(jué)描寫:“笑響”“四面風(fēng)”“燕子呢喃”。通過(guò)觸覺(jué)描寫:“風(fēng)的軟”“暖”。多角度展開(kāi)描寫,表現(xiàn)了詩(shī)人的“愛(ài)之深,情之切”。能引導(dǎo)讀者調(diào)動(dòng)多種感官去感受詩(shī)人心中的“愛(ài)”,給讀者以感染?!窘虒W(xué)提示】指導(dǎo)學(xué)生結(jié)合詩(shī)人筆下的意象進(jìn)行分析。目標(biāo)導(dǎo)學(xué)三:品讀詩(shī)句,把握詩(shī)歌藝術(shù)特色探究:“新月派”的重要成員之一聞一多先生曾提出了“三美原則”,即“音樂(lè)美、繪畫美、建筑美”,奠定了新格律詩(shī)派的理論基礎(chǔ)。本詩(shī)既是新格律詩(shī)的典范,它是否表現(xiàn)了“三美”原則?是如何表現(xiàn)的?
二、說(shuō)教法:我在設(shè)計(jì)這節(jié)課時(shí)努力實(shí)踐新課程理念,充分突出學(xué)生的主體地位選擇教學(xué)方法,整堂課以“在情節(jié)與現(xiàn)實(shí)寫照中得到情感體驗(yàn)”為教學(xué)主線,通過(guò)整體感知,情節(jié)領(lǐng)悟,細(xì)節(jié)品味等途徑,運(yùn)用快速閱讀,自主合作探究等方法,引導(dǎo)學(xué)生深入文本,感受主旨,與文章對(duì)話,與自己對(duì)話,與同學(xué)老師對(duì)話,在這種感受,體驗(yàn)、交流的課堂學(xué)習(xí)過(guò)程中逐步提升情感態(tài)度價(jià)值觀。三、說(shuō)學(xué)法:采用“自主、合作、探究”的學(xué)習(xí)方式,讓學(xué)生自主進(jìn)入文本,讀出感受,通過(guò)小組合作交流探究來(lái)解決問(wèn)題?!径?#183;三理論依據(jù)】教學(xué)過(guò)程必須根據(jù)學(xué)生語(yǔ)文學(xué)習(xí)的特點(diǎn),關(guān)注學(xué)生的個(gè)體的學(xué)習(xí)需求,愛(ài)護(hù)學(xué)生的好奇心,求知欲,充分激發(fā)學(xué)生的主動(dòng)意識(shí),倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,有助于學(xué)生學(xué)習(xí)方式的形成。