1.探究:根據(jù)基本事實(shí)的推論2,3,過(guò)兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對(duì)邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長(zhǎng)方體模型來(lái)說(shuō)明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開(kāi)圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來(lái)解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開(kāi)圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過(guò)實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長(zhǎng)度.解:取BC中點(diǎn)O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊(cè)書中的重點(diǎn)內(nèi)容,又是對(duì)函數(shù)知識(shí)的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過(guò)具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽(yáng)光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測(cè)具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長(zhǎng)度不變,平行于Y軸的線段,在直觀圖中長(zhǎng)度為原來(lái)一半。4.對(duì)斜二測(cè)方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測(cè)畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測(cè)畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測(cè)畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測(cè)畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長(zhǎng),豎直線段減半;(4)整理.簡(jiǎn)言之:“橫不變,豎減半,平行、重合不改變?!?/p>
新知探究:向量的減法運(yùn)算定義問(wèn)題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來(lái)進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問(wèn)題六:根據(jù)問(wèn)題五,思考一下向量減法的幾何意義是什么?問(wèn)題七:非零共線向量怎樣做減法運(yùn)算? 問(wèn)題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1.觀察(1)如圖,在陽(yáng)光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過(guò)點(diǎn)B的直線。而不過(guò)點(diǎn)B的直線在地面內(nèi)總是能找到過(guò)點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說(shuō)l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說(shuō)直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語(yǔ)言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號(hào)語(yǔ)言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽(yáng)光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過(guò)點(diǎn)B的直線。而不過(guò)點(diǎn)B的直線在地面內(nèi)總是能找到過(guò)點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說(shuō)l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說(shuō)直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語(yǔ)言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.
2學(xué)情分析二年級(jí)學(xué)生活潑可愛(ài),思維獨(dú)特,喜歡按照自己的想法自由地表現(xiàn)畫面。好奇心強(qiáng),愛(ài)表現(xiàn)自己,但動(dòng)手能力較差,只能用簡(jiǎn)單的工具和繪畫材料來(lái)稚拙地表現(xiàn)自己的想法。本課以學(xué)生親切、熟悉的名字為題材,更好的激發(fā)學(xué)生的表現(xiàn)欲望和獨(dú)創(chuàng)思維,讓學(xué)生能夠自信、大膽、自由地通過(guò)美術(shù)形式表達(dá)想法與感情。3重點(diǎn)難點(diǎn)重點(diǎn):設(shè)計(jì)具有自己特色的名字。難點(diǎn):能對(duì)名字的字形進(jìn)行分析,巧妙地運(yùn)用筆畫特征進(jìn)行想象設(shè)計(jì)。教學(xué)活動(dòng)
一、教學(xué)目標(biāo)(一)知識(shí)教育點(diǎn)使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程.(二)能力訓(xùn)練點(diǎn)要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點(diǎn)通過(guò)一個(gè)簡(jiǎn)單實(shí)驗(yàn)引入拋物線的定義,可以對(duì)學(xué)生進(jìn)行理論來(lái)源于實(shí)踐的辯證唯物主義思想教育.二、教材分析1.重點(diǎn):拋物線的定義和標(biāo)準(zhǔn)方程.2.難點(diǎn):拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動(dòng)設(shè)計(jì)提問(wèn)、回顧、實(shí)驗(yàn)、講解、板演、歸納表格.四、教學(xué)過(guò)程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運(yùn)動(dòng)軌跡給出拋物線的實(shí)際意義,再利用太陽(yáng)灶和拋物線型的橋說(shuō)明拋物線的實(shí)際用途。
教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點(diǎn):正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點(diǎn):正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時(shí):2學(xué)時(shí)教學(xué)過(guò)程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計(jì)算積分。首先計(jì)算。因?yàn)?利用極坐標(biāo)計(jì)算)所以。記,則利用定積分的換元法有因?yàn)?,所以它可以作為某個(gè)連續(xù)隨機(jī)變量的概率密度函數(shù)。定義 如果連續(xù)隨機(jī)變量的概率密度為則稱隨機(jī)變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。
教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 知識(shí)與技能掌握雙曲線的定義,掌握雙曲線的四種標(biāo)準(zhǔn)方程形式及其對(duì)應(yīng)的焦點(diǎn)、準(zhǔn)線.過(guò)程與方法掌握對(duì)雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),進(jìn)一步理解求曲線方程的方法——坐標(biāo)法.通過(guò)本節(jié)課的學(xué)習(xí),提高學(xué)生觀察、類比、分析和概括的能力.情感、態(tài)度與價(jià)值觀通過(guò)本節(jié)的學(xué)習(xí),體驗(yàn)研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實(shí)和解決實(shí)際問(wèn)題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.2. 教學(xué)重點(diǎn)/難點(diǎn) 教學(xué)重點(diǎn)雙曲線的定義及焦點(diǎn)及雙曲線標(biāo)準(zhǔn)方程.教學(xué)難點(diǎn)在推導(dǎo)雙曲線標(biāo)準(zhǔn)方程的過(guò)程中,如何選擇適當(dāng)?shù)淖鴺?biāo)系. 3. 教學(xué)用具 多媒體4. 標(biāo)簽
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)直線與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無(wú)交點(diǎn); (2)相切:僅有一個(gè)交點(diǎn); (3)相交:有兩個(gè)交點(diǎn). 并且知道,直線與圓的位置關(guān)系,可以由圓心到直線的距離d與半徑r的關(guān)系來(lái)判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說(shuō)明 質(zhì)疑 引導(dǎo) 分析 了解 思考 思考 帶領(lǐng) 學(xué)生 分析 啟發(fā) 學(xué)生思考 0 15*動(dòng)腦思考 探索新知 【新知識(shí)】 設(shè)圓的標(biāo)準(zhǔn)方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學(xué)生 分析 30*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例6 判斷下列各直線與圓的位置關(guān)系: ⑴直線, 圓; ⑵直線,圓. 解 ⑴ 由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標(biāo)準(zhǔn)方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關(guān)系的其他方法? *例7 過(guò)點(diǎn)作圓的切線,試求切線方程. 分析 求切線方程的關(guān)鍵是求出切線的斜率.可以利用原點(diǎn)到切線的距離等于半徑的條件來(lái)確定. 解 設(shè)所求切線的斜率為,則切線方程為 , 即 . 圓的標(biāo)準(zhǔn)方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說(shuō)明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問(wèn)題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線垂直于過(guò)切點(diǎn)的半徑”的幾何性質(zhì)求出切線方程? 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 講解 說(shuō)明 觀察 思考 主動(dòng) 求解 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 50
本人所教的兩個(gè)班級(jí)學(xué)生普遍存在著數(shù)學(xué)科基礎(chǔ)知識(shí)較為薄弱,計(jì)算能力較差,綜合能力不強(qiáng),對(duì)數(shù)學(xué)學(xué)習(xí)有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識(shí)到自己的不足,對(duì)數(shù)學(xué)課的學(xué)習(xí)興趣高,積極性強(qiáng)。 學(xué)生在學(xué)習(xí)交往上表現(xiàn)為個(gè)別化學(xué)習(xí),課堂上較為依賴?yán)蠋煹囊龑?dǎo)。學(xué)生的群體性小組交流能力與協(xié)同討論學(xué)習(xí)的能力不強(qiáng),對(duì)學(xué)習(xí)資源和知識(shí)信息的獲取、加工、處理和綜合的能力較低。在教學(xué)中盡量分析細(xì)致,減少跨度較大的環(huán)節(jié),對(duì)重要的推導(dǎo)過(guò)程采用板書方式逐步進(jìn)行,力求讓絕大多數(shù)學(xué)生接受。 1.理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo);掌握橢圓的標(biāo)準(zhǔn)方程;會(huì)根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程,會(huì)根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點(diǎn)坐標(biāo). 2.通過(guò)橢圓圖形的研究和標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用。 1.讓學(xué)生經(jīng)歷橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,進(jìn)一步掌握求曲線方程的一般方法,體會(huì)數(shù)形結(jié)合等數(shù)學(xué)思想;培養(yǎng)學(xué)生運(yùn)用類比、聯(lián)想等方法提出問(wèn)題. 2.培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,進(jìn)一步掌握利用方程研究曲線的基本方法,通過(guò)與橢圓幾何性質(zhì)的對(duì)比來(lái)提高學(xué)生聯(lián)想、類比、歸納的能力,解決一些實(shí)際問(wèn)題。 1.通過(guò)具體的情境感知研究橢圓標(biāo)準(zhǔn)方程的必要性和實(shí)際意義;體會(huì)數(shù)學(xué)的對(duì)稱美、簡(jiǎn)潔美,培養(yǎng)學(xué)生的審美情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度. 2.進(jìn)一步理解并掌握代數(shù)知識(shí)在解析幾何運(yùn)算中的作用,提高解方程組和計(jì)算能力,通過(guò)“數(shù)”研究“形”,說(shuō)明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過(guò)“數(shù)”的變化研究“形”的本質(zhì)。幫助學(xué)生建立勇于探索創(chuàng)新的精神和克服困難的信心。
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個(gè)不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個(gè)不同元素中任選4個(gè)元素的排列問(wèn)題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個(gè)?能被5整除的有多少個(gè)?(2)這些四位數(shù)中大于6 500的有多少個(gè)?解:(1)偶數(shù)的個(gè)位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個(gè));能被5整除的數(shù)個(gè)位必須是5,故有A_6^3=120(個(gè)).(2)最高位上是7時(shí)大于6 500,有A_6^3種,最高位上是6時(shí),百位上只能是7或5,故有2×A_5^2種.由分類加法計(jì)數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個(gè)).
探究新知問(wèn)題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.
2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為_(kāi)_______. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為_(kāi)_______. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問(wèn)從這批產(chǎn)品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過(guò);若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過(guò),求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過(guò)”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.
3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.
解析:因?yàn)闇p法和除法運(yùn)算中交換兩個(gè)數(shù)的位置對(duì)計(jì)算結(jié)果有影響,所以屬于組合的有2個(gè).答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因?yàn)锳_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個(gè)元素的子集共有 個(gè). 解析:滿足要求的子集中含有4個(gè)元素,由集合中元素的無(wú)序性,知其子集個(gè)數(shù)為C_5^4=5.答案:54.平面內(nèi)有12個(gè)點(diǎn),其中有4個(gè)點(diǎn)共線,此外再無(wú)任何3點(diǎn)共線,以這些點(diǎn)為頂點(diǎn),可得多少個(gè)不同的三角形?解:(方法一)我們把從共線的4個(gè)點(diǎn)中取點(diǎn)的多少作為分類的標(biāo)準(zhǔn):第1類,共線的4個(gè)點(diǎn)中有2個(gè)點(diǎn)作為三角形的頂點(diǎn),共有C_4^2·C_8^1=48(個(gè))不同的三角形;第2類,共線的4個(gè)點(diǎn)中有1個(gè)點(diǎn)作為三角形的頂點(diǎn),共有C_4^1·C_8^2=112(個(gè))不同的三角形;第3類,共線的4個(gè)點(diǎn)中沒(méi)有點(diǎn)作為三角形的頂點(diǎn),共有C_8^3=56(個(gè))不同的三角形.由分類加法計(jì)數(shù)原理,不同的三角形共有48+112+56=216(個(gè)).(方法二 間接法)C_12^3-C_4^3=220-4=216(個(gè)).
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。