一、教學(xué)理論依據(jù)及設(shè)計(jì)理念以新課程理念和新課標(biāo)為指針,依據(jù)建構(gòu)主義理論、學(xué)科探究理論和多元智力理論,采用探究式的教學(xué)模式來組織實(shí)施本節(jié)課的教學(xué)。學(xué)生成為課堂的主體和知識(shí)的主動(dòng)構(gòu)建者。通過創(chuàng)設(shè)多種情境,讓學(xué)生積極參與、體驗(yàn)、感悟,主動(dòng)獲得新知,并逐步提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。教師從課堂的主宰變?yōu)檎n堂的主導(dǎo),是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者。教學(xué)過程是一個(gè)發(fā)散式的學(xué)生自主學(xué)習(xí)的過程。采用自主、合作、探究式的教學(xué)方式,讓學(xué)生有多元選擇,激發(fā)他們的潛能,發(fā)展他們的個(gè)性。二、教材分析1.教材的地位與作用:本框題是《生活與哲學(xué)》第二單元《探索世界與追求真理》第六課“求索真理的歷程”的第二節(jié)內(nèi)容。本單元的核心問題是如何看待我們周圍的世界,該問題也是《生活與哲學(xué)》整本書的核心問題之一。
四、說學(xué)法哲學(xué)知識(shí)是比較抽象的,大多數(shù)學(xué)生都覺得哲學(xué)的內(nèi)容很難把握,因此,針對(duì)學(xué)生的實(shí)際情況,在教學(xué)中必須發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。通過觀察、教師的引導(dǎo)及討論來加深理解;通過練習(xí)來鞏固所學(xué)知識(shí)。1.觀察法:引導(dǎo)學(xué)生觀察生活中的現(xiàn)象,加深理解發(fā)展的普遍性和發(fā)展的實(shí)質(zhì)。2.探究法:讓學(xué)生在討論中體會(huì)發(fā)展的永恒性,知道用發(fā)展的觀點(diǎn)看問題。3.練習(xí)法:“溫故而知新”,學(xué)以致用,及時(shí)給一些習(xí)題讓學(xué)生練習(xí),讓他們更能把握教材內(nèi)容。五、說教學(xué)過程:[導(dǎo)入新課]引用一個(gè)歷史故事來導(dǎo)入新課。(利用多媒體課件展示)[講授新課]第一目:發(fā)展的普遍性①、自然界是發(fā)展的。(展示人的進(jìn)化過程的圖片和青蛙成長(zhǎng)過程的圖片,結(jié)合教材的例子來說明自然界是發(fā)展的)
1.導(dǎo)入新課:用觸目精心的一首MTV《EARTHSONG》導(dǎo)入新課,引出人類已經(jīng)面臨嚴(yán)峻的人口、資源與環(huán)境的危機(jī)。而中國(guó)是世界上人口最龐大的國(guó)家,人口、資源與環(huán)境問題更加嚴(yán)重。既然我們知道了可持續(xù)發(fā)展的概況,了解了它的發(fā)展過程,從上節(jié)課內(nèi)容的分析中,也理解了作為人類的發(fā)展,可持續(xù)是唯一的選擇,也是我們所追求的目標(biāo),那么,具體到我們國(guó)家、我們周圍的生產(chǎn)、生活情況又該如何呢?2.新課講授:首先,通過三則補(bǔ)充材料的案例和課本上的內(nèi)容分別說明龐大的人口壓力,資源短缺和不合理利用,深刻的環(huán)境危機(jī)方面的問題,得出走可持續(xù)發(fā)展之路是我國(guó)的必然的唯一的選擇。接著通過《中國(guó)21世紀(jì)議程》——中國(guó)21世紀(jì)人口環(huán)境與發(fā)展的白皮書的過渡引出實(shí)施可持續(xù)發(fā)展的途徑。在這部分內(nèi)容的講解上,主要通過其中一種主要途徑-循環(huán)經(jīng)濟(jì)的講解,特別是對(duì)清潔生產(chǎn)和生態(tài)農(nóng)業(yè)的具體分析,總結(jié)出中國(guó)走可持續(xù)發(fā)展之路事在必行,行必有果。再通過完成課本上最后一個(gè)活動(dòng)題對(duì)本節(jié)內(nèi)容進(jìn)行深化。
1、說說旅游環(huán)境容量測(cè)算對(duì)頤和園環(huán)境保護(hù)所起的作用。點(diǎn)撥:旅游環(huán)境容量測(cè)算對(duì)頤和園環(huán)境保護(hù)所起的作用是通過對(duì)游客流量的控制來實(shí)現(xiàn)的。頤和園的旅游吸引物有許多是珍貴的文物,游客的觸摸、踐踏等都會(huì)使文物遭受損耗控制客流量就控制了這些損耗。游客過多,廢棄物也過多,超過頤和園的承受能力就會(huì)造成污染,控制客流量可以使廢棄物控制在處理能力范圍內(nèi)??刂朴慰腿萘?,可避免游客過多造成旅游氛圍和景觀的破壞,可避免發(fā)生各種矛盾和不文明行為乃至犯罪行為。旅游環(huán)境容量測(cè)算為頤和園的管理、發(fā)展和規(guī)劃提供了基本依據(jù),有助于管理部門因時(shí)因地做好管理、監(jiān)督、疏導(dǎo)工作,有助于制訂頤和園旅游發(fā)展規(guī)劃,還有助于采取頤和園客流的時(shí)空分流措施。2、你還有沒有更好的辦法來解決頤和園旅游環(huán)境容量問題。點(diǎn)撥:解決頤和園旅游環(huán)境容量問題可以從“開源”和“節(jié)流”兩方面加以考慮。
一、 學(xué)情分析根據(jù)新課程的核心理念:課程教學(xué)要以學(xué)生發(fā)展為本,讓學(xué)生主主動(dòng)參與是新課程實(shí)施的核心。所以我們要了解學(xué)生的基本情況。一方面:在高二階段學(xué)生的思維能力從總體上看,正處于急劇發(fā)展、變化和成熟的過程中,他們急迫要去了解認(rèn)識(shí)不斷變化的社會(huì)。另一方面:此階段的學(xué)生知識(shí)儲(chǔ)備還不夠、閱歷淺,對(duì)于社會(huì)歷史的發(fā)展還停留在感性認(rèn)識(shí)的基礎(chǔ)上,還沒有上升到理性的高度。因此對(duì)其進(jìn)行本框的教學(xué)很有必要。二、 教材分析俗話說,教材是老師的教本,學(xué)生的學(xué)本。所以正確理解教材,對(duì)其進(jìn)行資源整合很有必要。(一)本框內(nèi)容結(jié)構(gòu)《社會(huì)歷史的主體》是人教版新課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材高中思想政治教育必修4生活與哲學(xué)第四單元《尋覓社會(huì)的真諦》第11課第2框的內(nèi)容,本框題包括兩目:人民群眾是歷史的創(chuàng)造者;群眾觀點(diǎn)和群眾路線。
1.潛在價(jià)值──某種不知名的昆蟲。間接價(jià)值──每個(gè)物種都維系著它們所在的生態(tài)系統(tǒng)的結(jié)構(gòu)和功能。直接價(jià)值──蘆葦是一種重要的造紙?jiān)希幌s蛻是一種動(dòng)物性藥物;魯班通過觀察某種葉片的葉緣得到啟示,研制出了木工用的鋸;海洋和森林等生態(tài)系統(tǒng)能陶冶情操、激發(fā)創(chuàng)作的靈感。2.主要的困難是,一些發(fā)達(dá)國(guó)家(如美國(guó)、加拿大和歐盟國(guó)家等),拒絕核準(zhǔn)或遲遲不予核準(zhǔn)該議定書。主要爭(zhēng)議的問題是,這些國(guó)家擔(dān)心影響本國(guó)經(jīng)濟(jì)的發(fā)展和其他國(guó)家可能不承擔(dān)相應(yīng)的責(zé)任。例如,美國(guó)政府在2003年3月以“減少溫室氣體排放將會(huì)影響美國(guó)經(jīng)濟(jì)發(fā)展”和“發(fā)展中國(guó)家也應(yīng)該承擔(dān)減排和限排溫室氣體的義務(wù)”為由,宣布拒絕執(zhí)行《京都議定書》。建議世界各國(guó)特別是發(fā)展中國(guó)家聯(lián)合起來,通過聯(lián)合國(guó)大會(huì)和各國(guó)的政府以及民間組織等多種途徑,呼吁每年大量產(chǎn)生溫室氣體的發(fā)達(dá)國(guó)家率先核準(zhǔn)《京都議定書》(我國(guó)政府早在2002年9月就核準(zhǔn)了《京都議定書》)。
(一)例題引入籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分。某隊(duì)在10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場(chǎng),則負(fù)(10-X)場(chǎng)。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場(chǎng),負(fù)Y場(chǎng)。根據(jù):勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù) 勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分得到:X+Y=10 2X+Y=16
一、定義: ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開式;上述二項(xiàng)展開式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開式的通項(xiàng),用表示;叫做二項(xiàng)展開式的通項(xiàng)公式.二、二項(xiàng)展開式的特點(diǎn)與功能1. 二項(xiàng)展開式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開式的功能注意到二項(xiàng)展開式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問題的原始依據(jù).又注意到在的二項(xiàng)展開式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項(xiàng)式公式也是不可或缺的理論依據(jù).
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:?jiǎn)栴}一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來度量成績(jī)的波動(dòng)幅度。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡(jiǎn)稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識(shí).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊(cè)書中的重點(diǎn)內(nèi)容,又是對(duì)函數(shù)知識(shí)的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測(cè)具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長(zhǎng)度不變,平行于Y軸的線段,在直觀圖中長(zhǎng)度為原來一半。4.對(duì)斜二測(cè)方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測(cè)畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測(cè)畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測(cè)畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測(cè)畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長(zhǎng),豎直線段減半;(4)整理.簡(jiǎn)言之:“橫不變,豎減半,平行、重合不改變?!?/p>
1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對(duì)邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長(zhǎng)方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
問題導(dǎo)入:?jiǎn)栴}一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒有其他差異。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.