提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中語文必修3《杜甫詩三首 秋興八首》說課稿2篇

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進(jìn)一步加深對函數(shù)概念的理解。課本從引進(jìn)函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認(rèn)識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的零點與方程的解教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)的零點與方程的解教學(xué)設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進(jìn)一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認(rèn)識函數(shù)零點的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進(jìn)行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;

  • 人教A版高中數(shù)學(xué)必修一集合的基本運算教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一集合的基本運算教學(xué)設(shè)計(1)

    本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補(bǔ)集。是對集合基木知識的深入研究。在此,通過適當(dāng)?shù)膯栴}情境,使學(xué)生感受、認(rèn)識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補(bǔ)集的含義,會求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運算。

  • 人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(1)

    本節(jié)內(nèi)容來自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個重要基礎(chǔ),是一個具有獨特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語言來學(xué)習(xí),在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時也是下一節(jié)學(xué)習(xí)集合間的基本運算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學(xué)習(xí),可以進(jìn)一步幫助學(xué)生利用集合語言進(jìn)行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。

  • 人教A版高中數(shù)學(xué)必修二空間點、直線、平面之間的位置關(guān)系教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二空間點、直線、平面之間的位置關(guān)系教學(xué)設(shè)計

    9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).

  • 人教A版高中數(shù)學(xué)必修二立體圖形直觀圖教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二立體圖形直觀圖教學(xué)設(shè)計

    1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時,把他們畫成對應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進(jìn)行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變?!?/p>

  • 人教A版高中數(shù)學(xué)必修二平面與平面平行教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二平面與平面平行教學(xué)設(shè)計

    1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。

  • 人教A版高中數(shù)學(xué)必修二圓柱、圓錐、圓臺和球的表面積與體積教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二圓柱、圓錐、圓臺和球的表面積與體積教學(xué)設(shè)計

    1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認(rèn)識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.

  • 人教A版高中數(shù)學(xué)必修二向量的減法運算教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二向量的減法運算教學(xué)設(shè)計

    新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個向量相當(dāng)于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質(zhì)上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

  • 人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.

  • 人教A版高中數(shù)學(xué)必修二直線與直線垂直教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二直線與直線垂直教學(xué)設(shè)計

    6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時,EF=OE=OF=1,當(dāng)∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=

  • 人教A版高中數(shù)學(xué)必修二事件的相互獨立性教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二事件的相互獨立性教學(xué)設(shè)計

    問題導(dǎo)入:問題一:試驗1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標(biāo)號分別是1,2,3,4的4個球,除標(biāo)號外沒有其他差異。

  • 人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.

  • 人教A版高中數(shù)學(xué)必修一二次函數(shù)與一元二次方程、不等式教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一二次函數(shù)與一元二次方程、不等式教學(xué)設(shè)計(2)

    三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運用二次函數(shù)及其圖像,性質(zhì)解決實際問題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實際問題;5.數(shù)學(xué)建模:運用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.

  • 空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認(rèn)識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)

  • 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點坐標(biāo)為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個焦點的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

上一頁123...515253545556575859606162下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。