提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中歷史必修3宋明理學(xué)說課稿3篇

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 人教版新課標(biāo)高中地理必修2第六章第一節(jié)人地關(guān)系思想的演變教案

    人教版新課標(biāo)高中地理必修2第六章第一節(jié)人地關(guān)系思想的演變教案

    環(huán)境問題 是伴著人口問題、資源問題和發(fā)展問題產(chǎn)生。本質(zhì)是發(fā)展問題 ,可持續(xù)發(fā)展。6分析可持續(xù)發(fā)展的概念、內(nèi)涵和 原則?可持續(xù)發(fā)展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當(dāng)代人的需求,而又不損害后代人滿足其需求的能力。可持續(xù)發(fā)展的內(nèi)涵:生態(tài)持續(xù)發(fā)展 ,發(fā)展的基礎(chǔ);經(jīng)濟(jì)持續(xù)發(fā)展,發(fā)展條件;社會(huì)持續(xù)發(fā)展,發(fā)展目的??沙掷m(xù)發(fā)展的原則:公平性原則——代內(nèi)、代際、人與物、國家與地區(qū)之間;持續(xù)性原則——經(jīng)濟(jì)活動(dòng)保持在資源環(huán)境承載力之內(nèi);共同性原則— —地球是一個(gè)整體?!究偨Y(jié)新課】可持續(xù)發(fā) 展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當(dāng)代人的需求,而又不損害后代人滿足其需求的能力??沙掷m(xù)發(fā)展的內(nèi)涵:生態(tài)持續(xù)發(fā)展,發(fā)展的基礎(chǔ);經(jīng)濟(jì)持續(xù)發(fā)展,發(fā)展條件;社會(huì)持續(xù)發(fā)展,發(fā)展目的。

  • 人教版新課標(biāo)高中地理必修2第三章第三節(jié)以畜牧業(yè)為主的農(nóng)業(yè)地域類型教案

    人教版新課標(biāo)高中地理必修2第三章第三節(jié)以畜牧業(yè)為主的農(nóng)業(yè)地域類型教案

    知識(shí)與技能1.了解大牧場放牧業(yè)和乳畜業(yè)兩種農(nóng)業(yè)地域類型及其分布。2.通過學(xué)習(xí)大牧場放牧業(yè),學(xué)會(huì)分析農(nóng)業(yè)區(qū)位因素,訓(xùn)練讀圖分析能力。3.掌握大牧場放牧業(yè)在經(jīng)營方式、商品化、專業(yè)化、經(jīng)濟(jì)效益等方面的特點(diǎn)。4.解西歐乳畜業(yè)的形成因素。過程 與方法1.通過對(duì)潘帕斯草原大牧場放牧業(yè)區(qū)位因素的分析,學(xué)會(huì)歸納大牧場放牧業(yè)的區(qū)位條件。2.把西歐乳畜業(yè)和潘帕斯草原大牧場放牧業(yè)的區(qū)位條件作比較。情感態(tài)度與價(jià)值觀1.自然條件是農(nóng)業(yè)地域類型形成的條件,人類必須尊重自然規(guī)律,才能天人合一。2.人文條件也越來越大地影響到農(nóng)業(yè)的區(qū)位選擇,事物是發(fā)展的,不能用靜止的觀點(diǎn)看待問題。【教學(xué)重點(diǎn)】1.理解大牧場放牧業(yè)和乳畜業(yè)兩類農(nóng)業(yè)地域類型的區(qū)位因素。2.利用圖表資料分析農(nóng)業(yè)區(qū)位因素的能力。

  • 人教版新課標(biāo)高中地理必修2第二章第二節(jié)不同等級(jí)城市的服務(wù)功能教案

    人教版新課標(biāo)高中地理必修2第二章第二節(jié)不同等級(jí)城市的服務(wù)功能教案

    1.了解我國城市等級(jí)劃分的標(biāo)準(zhǔn),知道不同國家和地區(qū)城市等級(jí)劃分的標(biāo)準(zhǔn)是不同的。2.了解不同的城市等級(jí)其城市地域結(jié)構(gòu)不同,提供的服務(wù)種類和服務(wù)范圍是不同的。聯(lián)系城市地域結(jié)構(gòu)的有關(guān)理論,說明不同規(guī)模城市服務(wù)功能的差異。3.了解不同等級(jí)城市服務(wù)范圍的嵌套理論,了解不同等級(jí)城市空間分布特點(diǎn)。教學(xué)重點(diǎn):1.了解我國城市等級(jí)劃分的標(biāo)準(zhǔn)2.了解不同的城市等級(jí)其城市地域結(jié)構(gòu)不同,提供的服務(wù)種類和服務(wù)范圍是不同的。教學(xué)難點(diǎn)::不同等級(jí)城市服務(wù)范圍的嵌套理論教具準(zhǔn)備:多媒體教學(xué)方法:比較分析法、圖示法、講述法、列表對(duì)比法教學(xué)過程:第一課時(shí)導(dǎo)入新課:我們生活在不同的城市,如廣州、佛山、西樵等,我們知道,這些城市有大小之分,也就是說城市等級(jí)是是不同的,那么城市的等級(jí)是如何劃分的呢?不同等級(jí)城市的服務(wù)功能如何呢?這就是我們今天要探討的第二節(jié)

  • 人教版新課標(biāo)高中地理必修2第四章第三節(jié)傳統(tǒng)工業(yè)區(qū)與新工業(yè)區(qū)教案

    人教版新課標(biāo)高中地理必修2第四章第三節(jié)傳統(tǒng)工業(yè)區(qū)與新工業(yè)區(qū)教案

    知識(shí)目標(biāo)1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標(biāo)1.讀圖分析礦產(chǎn)資源與工業(yè)部門之間的聯(lián)系,培養(yǎng)學(xué)生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應(yīng)因地制宜。2.聯(lián)系實(shí)際,了解當(dāng)?shù)貍鹘y(tǒng)工業(yè)發(fā)展?fàn)顩r,為適應(yīng)當(dāng)今世界經(jīng)濟(jì)發(fā)展?fàn)顩r,應(yīng)有哪些改善措施,培養(yǎng)學(xué)生的創(chuàng)新能力。德育目標(biāo)1.通過了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點(diǎn)看待傳統(tǒng)工業(yè)區(qū)的改造,適應(yīng)世界發(fā)展潮流。2.中國已經(jīng)“入世”,我們應(yīng)用辯證唯物主義觀點(diǎn)分析我國傳統(tǒng)工業(yè)今后遇到的機(jī)遇和挑戰(zhàn)。

  • 人教版新課標(biāo)高中地理必修2第二章第一節(jié)城市內(nèi)部空間結(jié)構(gòu)教案

    人教版新課標(biāo)高中地理必修2第二章第一節(jié)城市內(nèi)部空間結(jié)構(gòu)教案

    為城市居民提供休養(yǎng)生息的場所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請(qǐng)同學(xué)講解高級(jí)住宅區(qū)與低級(jí)住宅區(qū)的差別(學(xué)生答)(教師總結(jié))(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門占地面積很小,或者布局分散,形成不了相應(yīng)的功能 區(qū)。(教師提問)我們把城市功能區(qū)分了好幾種,比如說住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒有其他的功能了呢?(學(xué)生回答)不是(教師總結(jié))不是的。我們說的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請(qǐng)看書上的活動(dòng)題。

  • 人教版新課標(biāo)高中地理必修2第五章第二節(jié)交通運(yùn)輸布局及其影響教案

    人教版新課標(biāo)高中地理必修2第五章第二節(jié)交通運(yùn)輸布局及其影響教案

    (分析:北京的商業(yè)中心分布和變化大致分三個(gè)階段:鐘鼓樓市場、三足鼎立格局形成、環(huán)路沿線商業(yè)中心出現(xiàn)。相對(duì)應(yīng)的交通變化,鐘鼓樓市場衰退與大運(yùn)河運(yùn)輸?shù)匚凰ヂ?、運(yùn)輸方式的變化密切相關(guān),后兩個(gè)階段與城市交通干線形態(tài)變化緊密聯(lián)系)。〔承轉(zhuǎn)〕商業(yè)中心的發(fā)展是隨著交通的發(fā)展而變化的,集鎮(zhèn)也是在交通要道上發(fā)展起來 的。(3)對(duì)集鎮(zhèn)發(fā)展的影響〔舉例說明〕陜西省勉縣的長林鎮(zhèn),過去地處漢中經(jīng)褒河去甘肅、四川的必經(jīng)之路,來往客商眾多,商業(yè)十分繁榮。后來由于改線,集鎮(zhèn)逐漸衰落,至今連定期的集市貿(mào)易都沒有了,完全退化為單純的居民點(diǎn)。以及運(yùn)河沿線城鎮(zhèn)如山東等的興衰,亦可說明交通線的改變對(duì)聚落的影響?!部偨Y(jié)〕交通線路的改變常會(huì)引起集鎮(zhèn)的繁榮或衰落。

  • 人教版新課標(biāo)高中地理必修2第五章第一節(jié)交通運(yùn)輸方式和布局教案

    人教版新課標(biāo)高中地理必修2第五章第一節(jié)交通運(yùn)輸方式和布局教案

    (2)修建通向西藏的鐵路,要克服哪些自然障礙?①凍土的季節(jié)凍融作用使路基不穩(wěn)固,也使修路技術(shù)難度大,成本高②生態(tài)脆弱,植被破壞后難以修復(fù)③高原缺氧,使施工困難④廣布的荒漠,多山的地形都使建設(shè)難度加大(3)結(jié)合初中所學(xué)知識(shí)分析,未來穿行于青藏高原鐵路運(yùn)輸線上的貨車中主要運(yùn)輸?shù)呢浳镉心男??以鹽湖中礦物為原料的化工產(chǎn)品,有色金屬及其加工產(chǎn)品,畜產(chǎn)品及外省運(yùn)入的各種工業(yè)品等?!究偨Y(jié)新課】交通運(yùn)輸網(wǎng)的基本要素包括:交通線(鐵路、公路、航道、管道)和交通點(diǎn)(港口、車站、航空港);運(yùn)輸網(wǎng)有單一和綜合運(yùn)輸網(wǎng)二種形式。分國家級(jí)、省級(jí)和大區(qū)級(jí)三個(gè)層次。交通運(yùn)輸網(wǎng)的點(diǎn)線布局受經(jīng)濟(jì)、社會(huì)、技術(shù)和自然等因素的影響。【課后作業(yè)】:完成高一地理第二冊(cè)填圖冊(cè) 第五章第一節(jié)

  • 人教版新課標(biāo)高中地理必修2第四章第一節(jié)工業(yè)的區(qū)位因素與區(qū)位選擇教案

    人教版新課標(biāo)高中地理必修2第四章第一節(jié)工業(yè)的區(qū)位因素與區(qū)位選擇教案

    教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo):結(jié)合實(shí)例理解影響工業(yè)區(qū)位選擇的因素。聯(lián)系實(shí)際理解工業(yè)區(qū)位的發(fā)展變化。理解環(huán)境對(duì)工業(yè)區(qū)位的影響。2.過程與方法目標(biāo):利用圖表,分析影響 工業(yè)區(qū)位,培養(yǎng)學(xué)生應(yīng)用基礎(chǔ)知識(shí)及讀圖分析能力。了解本地工業(yè)發(fā)展情況,培養(yǎng)學(xué)生的分析能力。3.情感態(tài)度價(jià)值觀:通過對(duì)工業(yè)區(qū)位因素的學(xué)習(xí),激發(fā)學(xué)生探究地理問題的興趣。由環(huán)境對(duì)工業(yè)區(qū)位選擇的影響,培養(yǎng)學(xué)生的環(huán)保意識(shí),樹立工業(yè)發(fā)展必須走可持續(xù)發(fā)展之路的思想。教學(xué)重點(diǎn)1影響工業(yè)區(qū)位的主要因素;2.運(yùn)用工業(yè)區(qū)選擇的基本原理對(duì)工廠進(jìn)行合理的區(qū)位選擇。教學(xué)難點(diǎn) 判斷影響某個(gè)工廠區(qū)位的主導(dǎo)因素及其合理布局。教學(xué)方法 案例分析法、對(duì)比分析法、讀圖分析法、探究法教學(xué)用具 多媒體課件,圖表及補(bǔ)充材料課堂類型

  • 人教版新課標(biāo)高中地理必修2第三章第二節(jié)以種植業(yè)為主的農(nóng)業(yè)地域類型教案

    人教版新課標(biāo)高中地理必修2第三章第二節(jié)以種植業(yè)為主的農(nóng)業(yè)地域類型教案

    【教學(xué)重點(diǎn)】1.利用農(nóng)業(yè)區(qū)位因素分析的方法,學(xué)習(xí)水稻種植業(yè)和商品谷物農(nóng)業(yè)的特點(diǎn);2.對(duì)比水稻種植業(yè)和商品谷物農(nóng)業(yè)兩種農(nóng)業(yè)生產(chǎn)地域類型,理解在農(nóng)業(yè)地域類型形成的過程中,各個(gè)農(nóng)業(yè)區(qū)位因素對(duì)其發(fā)展的影響。【教學(xué)難點(diǎn)】1.學(xué)習(xí)農(nóng)業(yè)區(qū)位因素分析的方法,分析形成農(nóng)業(yè)地域類型的主導(dǎo)因素;2.結(jié)合文字資料與圖示資料的閱讀,初步掌握提取地理信息的基本方法?!窘虒W(xué)方法】自主探究與講議結(jié)合【教學(xué)課時(shí)】1課時(shí)【教學(xué)過程】(導(dǎo)入新課)同學(xué)們,通過前面一節(jié)課的學(xué)習(xí),我們已經(jīng)樹立了農(nóng)業(yè)區(qū)位因素的基本理論,并且有了農(nóng)業(yè)地域類型的一些基本認(rèn)識(shí),學(xué)習(xí)了種植業(yè)和畜牧業(yè)兼有的澳大利亞的混合農(nóng)業(yè),這一節(jié)我們繼續(xù)學(xué)習(xí)兩種以種 植業(yè)為主的農(nóng)業(yè)地域類型——季風(fēng)水田農(nóng)業(yè)和商品谷物農(nóng)業(yè)。

  • 人教版高中政治必修1第十課科學(xué)發(fā)展觀和小康社會(huì)的經(jīng)濟(jì)建設(shè)教案

    人教版高中政治必修1第十課科學(xué)發(fā)展觀和小康社會(huì)的經(jīng)濟(jì)建設(shè)教案

    一、教材分析第四單元“發(fā)展社會(huì)主義市場經(jīng)濟(jì)”旨在培養(yǎng)社會(huì)主義的建設(shè)者,高中生是未來社會(huì)主義現(xiàn)代化建設(shè)的主力軍,是將來參與市場經(jīng)濟(jì)活動(dòng)的主要角色,承擔(dān)著全面建設(shè)小康社會(huì)的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結(jié)構(gòu)如下:首先謳歌我國人民的生活水平達(dá)到總體小康這一偉大成就,然后從微觀和宏觀兩個(gè)方面介紹總體小康的成就。同時(shí)指出,我國現(xiàn)在達(dá)到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經(jīng)濟(jì)建設(shè)的新要求”。這一目專門介紹全面建設(shè)小康社會(huì)的經(jīng)濟(jì)目標(biāo),也是學(xué)生要重點(diǎn)把握的內(nèi)容。二、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)(1)識(shí)記總體小康的建設(shè)成就在宏觀和微觀上的表現(xiàn),全面建設(shè)小康社會(huì)的經(jīng)濟(jì)建設(shè)目標(biāo)。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會(huì)建設(shè)進(jìn)程是不平衡的發(fā)展過程。(3)運(yùn)用所學(xué)知識(shí),初步分析全面建設(shè)小康社會(huì)的意義。

上一頁123...474849505152535455565758下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!