問(wèn)題導(dǎo)入:?jiǎn)栴}一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問(wèn)題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問(wèn)題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒(méi)有其他差異。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開(kāi)圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來(lái)解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開(kāi)圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過(guò)實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問(wèn)題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來(lái)進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問(wèn)題六:根據(jù)問(wèn)題五,思考一下向量減法的幾何意義是什么?問(wèn)題七:非零共線向量怎樣做減法運(yùn)算? 問(wèn)題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1.觀察(1)如圖,在陽(yáng)光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過(guò)點(diǎn)B的直線。而不過(guò)點(diǎn)B的直線在地面內(nèi)總是能找到過(guò)點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說(shuō)l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說(shuō)直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語(yǔ)言:如圖.畫(huà)直線l與平面α垂直時(shí),通常把直線畫(huà)成與表示平面的平行四邊形的一邊垂直.③符號(hào)語(yǔ)言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽(yáng)光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過(guò)點(diǎn)B的直線。而不過(guò)點(diǎn)B的直線在地面內(nèi)總是能找到過(guò)點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說(shuō)l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說(shuō)直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語(yǔ)言:如圖.畫(huà)直線l與平面α垂直時(shí),通常把直線畫(huà)成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長(zhǎng)度.解:取BC中點(diǎn)O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
點(diǎn)撥:旅游地旅游資源的特色不同,可以安排的旅游活動(dòng)是不一樣的,直接影響對(duì)旅游者的吸引力。因此,出游前首先就需要收集旅游地旅游資源的類(lèi)型、主要游覽景區(qū)、景點(diǎn)的特色等情況。旅游地的時(shí)空可達(dá)性直接關(guān)系到旅游者從出發(fā)地到旅游地,然后再返回出發(fā)地的費(fèi)用和時(shí)間。一般來(lái)說(shuō),居住地與旅游地之間的空間距離過(guò)大,會(huì)使旅行的時(shí)間過(guò)長(zhǎng)、旅行費(fèi)用過(guò)高,經(jīng)濟(jì)距離增加,相應(yīng)地降低了旅游者的出游能力。而居住地與旅游地相距遙遠(yuǎn),也意味著兩地之間巨大的環(huán)境差異,這會(huì)增加對(duì)游客的吸引力。旅游服務(wù)設(shè)施和條件,如旅游交通方式及工具、旅游住宿條件、旅游餐飲的種類(lèi)和標(biāo)準(zhǔn)、導(dǎo)游服務(wù)、旅行費(fèi)用等信息也都在一定程度上影響著游客的選擇。圖5.3西藏布達(dá)拉宮和圖5.4云南香格里拉兩幅圖片顯示了西藏布達(dá)拉宮、云南香格里拉與眾不同的優(yōu)美景觀,吸引了眾多的游客前來(lái)觀光旅游,成為近年來(lái)國(guó)內(nèi)旅游的熱點(diǎn)。
抱怨是容易的,正如心理專(zhuān)家所言,“抱怨帶來(lái)輕松和快感,猶如乘舟順流而下,那是因?yàn)槲覀兪窃陧槕?yīng)自己負(fù)面思考的天性,而停止抱怨,改而用積極的態(tài)度去欣賞事物美好光明的一面,卻需要意志力?!钡拇_,抱怨是很多人生活的常態(tài)——工作、家庭、人際、天氣、交通……這些都是抱怨的對(duì)象。抱怨的人是不快樂(lè)的,他永遠(yuǎn)只會(huì)在不快樂(lè)的出發(fā)點(diǎn)原地打轉(zhuǎn),沒(méi)有意識(shí)到自己在思維和行為上需要的改變。抱怨是容易的,而停止抱怨,卻需要意志力。
三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問(wèn)題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過(guò)探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問(wèn)題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問(wèn)題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問(wèn)題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過(guò)程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過(guò)正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類(lèi)比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡(jiǎn)、求值、證明問(wèn)題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡(jiǎn)、證明等問(wèn)題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問(wèn)題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
二、活動(dòng)目標(biāo):1、利用紙棒進(jìn)行活動(dòng),學(xué)習(xí)跳竹竿游戲,發(fā)展彈跳能力。2、體驗(yàn)與同伴合作游戲帶來(lái)的快樂(lè)。3、愿意積極想辦法解決活動(dòng)中遇到的困難。三、活動(dòng)準(zhǔn)備:經(jīng)驗(yàn)準(zhǔn)備:幼兒觀看過(guò)錄像物質(zhì)準(zhǔn)備:人手一根紙棒(長(zhǎng)度為1米)。錄音機(jī),磁帶。四、活動(dòng)過(guò)程:1、開(kāi)始部分:幼兒隨音樂(lè)利用紙棒進(jìn)行隊(duì)列練習(xí)。導(dǎo)語(yǔ):今天天氣真不錯(cuò),我們騎著馬出去玩玩吧?。ㄓ變弘S音樂(lè)的變化“騎馬”變雙圓----大圓----小圓---- “坐馬車(chē)” )反思:活動(dòng)開(kāi)始部分設(shè)計(jì)了隨音樂(lè)利用紙棒進(jìn)行隊(duì)列練習(xí)在這一環(huán)節(jié)中由兩隊(duì)“騎馬”變雙圓----變小圓----合作組合“坐馬車(chē)”體現(xiàn)了動(dòng)靜交替的原則,讓幼兒初步嘗試了與同伴合作的快樂(lè),同時(shí)也為下一個(gè)環(huán)節(jié)奠定了基礎(chǔ)。2、基本部分:(1)利用紙棒進(jìn)行“一棒多玩”導(dǎo)語(yǔ):紙棒可以和我們玩坐馬車(chē)的游戲,還可以和我們玩什么游戲呢?我們一起來(lái)試試,可以自己玩,也可以和小伙伴一起玩。(幼兒四散游戲)隊(duì)形:兩路縱隊(duì)(見(jiàn)附圖)(2)學(xué)習(xí)“跳竹竿”游戲A、講解游戲玩法導(dǎo)語(yǔ):剛才小朋友用紙棒玩了許多游戲,今天老師要和大家用紙棒玩一個(gè)新游戲——跳竹竿,這個(gè)游戲可以三個(gè)或四個(gè)小朋友一起玩,其中兩個(gè)小朋友手拿竹竿面對(duì)面跪下,用竹竿同時(shí)分合敲擊,另一個(gè)小朋友在中間看準(zhǔn)竹竿的分合跳進(jìn)或跳出。大家可以自己選擇小伙伴一起試一試。隊(duì)形:梯形隊(duì)(見(jiàn)附圖)(3)幼兒自由組合嘗試玩“跳竹竿”游戲隊(duì)形:四散(4)對(duì)幼兒在游戲過(guò)程中出現(xiàn)的情況及時(shí)進(jìn)行指導(dǎo)(合作、交往方面)導(dǎo)語(yǔ):你剛才和誰(shuí)一起玩的?你們是怎么跳竹竿的?隊(duì)形:梯形隊(duì)(見(jiàn)附圖)(5)鼓勵(lì)幼兒創(chuàng)造性地玩“跳竹竿”游戲,師生共同參與。
教學(xué)目標(biāo)1.能從實(shí)際問(wèn)題中得到函數(shù)關(guān)系式,學(xué)會(huì)積累函數(shù)的建模思想;2.能對(duì)不同背景下函數(shù)模型(關(guān)系式)的比較,抽象出一次函數(shù)和正比例函數(shù)的概念,發(fā)展抽象思維及概括能力;3.初步理解一次函數(shù)與正比例函數(shù)的概念;4.知道一次函數(shù)與正比例函數(shù)的聯(lián)系和區(qū)別,體驗(yàn)特殊和一般的辯證關(guān)系;5.會(huì)判斷兩個(gè)變量之間的關(guān)系是一次函數(shù)還是正比例函數(shù);6.能根據(jù)問(wèn)題信息,確定一次函數(shù)與正比例函數(shù)的表達(dá)式,提升數(shù)學(xué)應(yīng)用能力;7.會(huì)根據(jù)一次函數(shù)與正比例函數(shù)的概念,求字母的取值;8.在一次函數(shù)和正比例函數(shù)概念的形成與應(yīng)用過(guò)程中, 體驗(yàn)函數(shù)與人類(lèi)生活的密切聯(lián)系,增強(qiáng)對(duì)函數(shù)學(xué)習(xí)的求知。感受合作交流的必要性,同時(shí)提高學(xué)生的觀察、抽象、概括的能力和語(yǔ)言表達(dá)能力,從而培養(yǎng)學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)的興趣。
問(wèn)題1. 用一個(gè)大寫(xiě)的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的一個(gè)座位編號(hào),總共能編出多少種不同的號(hào)碼?因?yàn)橛⑽淖帜腹灿?6個(gè),阿拉伯?dāng)?shù)字共有10個(gè),所以總共可以編出26+10=36種不同的號(hào)碼.問(wèn)題2.你能說(shuō)說(shuō)這個(gè)問(wèn)題的特征嗎?上述計(jì)數(shù)過(guò)程的基本環(huán)節(jié)是:(1)確定分類(lèi)標(biāo)準(zhǔn),根據(jù)問(wèn)題條件分為字母號(hào)碼和數(shù)字號(hào)碼兩類(lèi);(2)分別計(jì)算各類(lèi)號(hào)碼的個(gè)數(shù);(3)各類(lèi)號(hào)碼的個(gè)數(shù)相加,得出所有號(hào)碼的個(gè)數(shù).你能舉出一些生活中類(lèi)似的例子嗎?一般地,有如下分類(lèi)加法計(jì)數(shù)原理:完成一件事,有兩類(lèi)辦法. 在第1類(lèi)辦法中有m種不同的方法,在第2類(lèi)方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫(xiě)高考志愿時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專(zhuān)業(yè),如表,
當(dāng)A,C顏色相同時(shí),先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時(shí),先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會(huì)鋼琴和小號(hào)中的一種樂(lè)器,其中7人會(huì)鋼琴,3人會(huì)小號(hào),從中選出會(huì)鋼琴與會(huì)小號(hào)的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會(huì)鋼琴又會(huì)小號(hào)(把該人記為甲),只會(huì)鋼琴的有6人,只會(huì)小號(hào)的有2人.把從中選出會(huì)鋼琴與會(huì)小號(hào)各1人的方法分為兩類(lèi).第1類(lèi),甲入選,另1人只需從其他8人中任選1人,故這類(lèi)選法共8種;第2類(lèi),甲不入選,則會(huì)鋼琴的只能從6個(gè)只會(huì)鋼琴的人中選出,有6種不同的選法,會(huì)小號(hào)的也只能從只會(huì)小號(hào)的2人中選出,有2種不同的選法,所以這類(lèi)選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車(chē),效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫(xiě)英文字母,印刷用黑體表示,記作a;手寫(xiě)時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱(chēng)為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車(chē),效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫(xiě)英文字母,印刷用黑體表示,記作a;手寫(xiě)時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱(chēng)為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀察稱(chēng)為隨機(jī)試驗(yàn),簡(jiǎn)稱(chēng)試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過(guò)充分?jǐn)嚢韬髶u出一個(gè)球,觀察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱(chēng)為樣本點(diǎn),全體樣本點(diǎn)的集合稱(chēng)為試驗(yàn)E的樣本空間。
1.讓幼兒在認(rèn)識(shí)圓的基礎(chǔ)上,通過(guò)做做、玩玩,讓幼兒知道圓形的物體會(huì)滾動(dòng)。2.知道用輪子能省力。3.發(fā)展幼兒的發(fā)散性思維?!净顒?dòng)準(zhǔn)備】1.室外:(1)裝有圓形輪胎的小三輪車(chē)、四輪車(chē)、小推車(chē);(2)裝有除圓形以外的各種形狀輪胎的小三輪車(chē)、四輪車(chē)、小推車(chē)。2.室內(nèi):各種形狀的小積木,幼兒人手一套;裝有書(shū)籍的箱子一只,圓形的輪子兩個(gè),小推車(chē)一輛,大積木一塊,每組一只盒子(裝有橡皮泥、硬卡紙、彩色紙、剪刀、牙簽、膠水、蠟筆)?!净顒?dòng)過(guò)程】一、第一次嘗試:滾動(dòng)圓形和其他形狀構(gòu)成的物體在室外供給幼兒裝有圓形輪胎的小三輪車(chē)、四輪車(chē)、小推車(chē)以及裝著除圓形以外的各種形狀輪胎的小三輪車(chē)、四輪車(chē)、小推車(chē)。教師:“這里有許多車(chē)子,我們一起來(lái)玩一玩、想一想,哪些車(chē)子的輪子會(huì)滾動(dòng)?”二、第二次嘗試:圓形的東西會(huì)滾動(dòng)1.在室內(nèi)供給每位幼兒各種形狀的積木玩。①你們的桌子上有什么形狀的積木?②請(qǐng)你推動(dòng)各種積木,你發(fā)現(xiàn)了什么?③為什么圓形的積木輕輕一推會(huì)滾,而梯形、正方形、長(zhǎng)方形、三角形等的積木不會(huì)滾動(dòng)呢?小結(jié):圓形的東西會(huì)滾動(dòng),因?yàn)樗鼪](méi)有角。
一、教學(xué)目標(biāo)1、讓學(xué)生懂得使用文明用語(yǔ)是學(xué)生應(yīng)有的美德。2、讓學(xué)生知道常用的文明用語(yǔ),并學(xué)會(huì)運(yùn)用。3、培養(yǎng)學(xué)生使用文明用語(yǔ)的良好習(xí)慣。