解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
情景導入:......運用情景營造氣氛,激發(fā)學生的求知欲望,幫助學生聯(lián)系現(xiàn)實問題,學習歷史,拉近歷史與現(xiàn)實的距離,引導學生關注時政熱點,關心國家大事。自主學習:組織學生閱讀課文,老師參與學生閱讀活動并板書知識結構。通過學生自主學習,培養(yǎng)學生自學能力,為進一步好好學習打下基礎。交流學習:學生自學以后,老師引導學生相互交流自學成果,學生自主提出問題,相互解答,從而達到生生互動、師生互動,在互動中學習,共同提高
1、教材分析 本課選自普通高中課程標準實驗教材,人民教育出版社歷史必修(1),第六單元:現(xiàn)代中國的政治建設與祖國統(tǒng)一,第22課——祖國統(tǒng)一大業(yè)。祖國統(tǒng)一始終是中國人民的共同夙愿。本課內容主要敘述了“一國兩制”的偉大構想,為完成祖國統(tǒng)一大業(yè)提出了一個創(chuàng)造性的指導方針。香港、澳門的回歸,是“一國兩制” 偉大構想的成功實踐。在“一國兩制”方針指導下,海峽兩岸實現(xiàn)了一次歷史性的突破。揭示了“一國兩制” 的構想,對推動完成祖國完全統(tǒng)一大業(yè),實現(xiàn)中華民族偉大復興具有現(xiàn)實指導意義。 2、學情分析通過調查知道,學生對本節(jié)的基本史實有一定了解。但是,高一新生習慣于知識的記憶和教師的講解,不能深入分析歷史現(xiàn)象的內涵和外延;不能進一步探究事物的因果關系和理解事物的本質;并且需要進一步拓展思維的廣度和深度,實現(xiàn)從一維目標到三維目標的飛躍。
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼担蠼乜贏BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質求標準方程的思路1.利用橢圓的幾何性質求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學的重要內容,具有豐富的內涵和密切的聯(lián)系,同時也是研究包含二次曲線在內的許多內容的工具 高考試題中近一半的試題與這三個“二次”問題有關 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學生能夠運用二次函數(shù)及其圖像,性質解決實際問題. 3. 滲透數(shù)形結合思想,進一步培養(yǎng)學生綜合解題能力。數(shù)學學科素養(yǎng)1.數(shù)學抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學運算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實際問題;5.數(shù)學建模:運用數(shù)形結合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本節(jié)內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.
3、討論問題二:我國、我市人口增長對環(huán)境有那些影響?教師:讓第三、第四組學生分別介紹、展示課前調查到的資料,說明人口增長對我國環(huán)境的影響、對三亞市環(huán)境的影響。學生:第三組學生派代表介紹人口增長過快對我國生態(tài)環(huán)境的影響。第四小組由學生自己主持“我市人口增長過快對三亞市生態(tài)環(huán)境的影響”討論會,匯報課前調查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學生討論、補充和完善。學生:觀察老師投影圖片并進行討論,對圖片問題進行補充和完善。教學意圖:通過讓學生匯報、觀察、主持,能讓學生親身體驗,更深刻地理解人口增長對生態(tài)環(huán)境的影響,培養(yǎng)和提高學生的表達能力、觀察能力、主持會議的能力。4、討論問題三:怎樣協(xié)調人與環(huán)境的關系?教師:組織第五組學生進行匯報課前調查到的資料,交流、討論、發(fā)表意見和見解。學生:展示課件、圖片,匯報調查到的情況,提出合理建議。
通過列表對比法、歸納法、、多媒體輔助法等教學方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學生更是學會運用圖表方法、高效記憶法、合作學習法等方法學習地理知識,增加學習能力。[幻燈片] “3S技術”的應用:地理信息技術的應用十分廣泛,從實際身旁的社會生產(chǎn)生活,到地理學的區(qū)域地理環(huán)境研究。學生的年齡和認知范圍決定,此部分的案例教學的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術特點和具體應用。而后者涉及地理學科的綜合性和區(qū)域性的特點,難度較大。針對學情特點,我多以前者案例入手學習,以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災區(qū)遙感圖像(4)教材 閱讀 遙感在農業(yè)方面的應用
(二)說學法指導把“學習的主動權還給學生”,倡導“自主、合作、探究”的學習方式,因而,我在教學過程中特別重視創(chuàng)造學生自主參與,合作交流的機會,充分利用學生已獲得的生活體驗,通過相關現(xiàn)象的再現(xiàn),激發(fā)學生主動參與,積極思考,分析現(xiàn)象背后的哲學理論依據(jù),幫助學生樹立批判精神和創(chuàng)新意識,從而增強教學效果,讓學生在自己思維的活躍中領會本節(jié)課的重點難點。(三)說教學手段:我運用多媒體輔助教學,展示富有感染力的各種現(xiàn)象和場景,營造一個形象生動的課堂氣氛。三、說教學過程教學過程堅持"情境探究法",分為"導入新課——推進新課——走進生活"三個層次,環(huán)環(huán)相扣,逐步推進,幫助學生完成由感性認識到理性認識的飛躍。下面我重點簡述一下對教學過程的設計。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學》第三單元第十課的第一框題,該部分的內容實質上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學好這部分的知識對于學生進一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學目標根據(jù)課程標準和課改精神,在教學中確定如下三維目標:1、知識目標:辯證否定觀的內涵,辯證法的本質。辯證否定是自我否定,辯證否定觀與書本知識和權威思想的關系,辯證法的革命批判精神與創(chuàng)新意識的關系,分析辯證否定的實質是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關。
2、講授新課:(35分鐘)通過教材第一目的講解,讓學生明白,生活和學習中有許多蘊涵哲學道理的故事,表明哲學并不神秘總結并過渡:生活也離不開哲學,哲學可以是我正確看待自然、人生、和社會的發(fā)展,從而指導人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結,鞏固重點難點,將本課的哲學知識遷移到與生活相關的例子,實現(xiàn)對知識的升華以及學生的再次創(chuàng)新;可使學生更深刻地理解重點和難點,為下一框學習做好準備。4、板書設計我采用直觀板書的方法,對本課的知識網(wǎng)絡在多媒體上進行展示。盡可能的簡潔,清晰。使學生對知識框架一目了然,幫助學生構建本課的知識結構。5、布置作業(yè)我會留適當?shù)淖詼y題及教學案例讓同學們做課后練習和思考,檢驗學生對本課重點的掌握以及對難點的理解。并及時反饋。對學生在理解中仍有困難的知識點,我會在以后的教學中予以疏導。
【這部分的設計目的,要學生明白熱帶雨林只是一個案例,我們的目的是要合理開發(fā)和保護全世界的森林。由森林的開發(fā)與保護來明確區(qū)域發(fā)展過程中產(chǎn)生的環(huán)境問題,危害及治理保護措施?!咳缓笾R遷移——東北林區(qū)的開發(fā)與保護介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補給土壤有機質、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點撥:由于人類的嚴重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災,東北林區(qū)的面積在銳減,帶來了嚴重的生態(tài)惡化。我們該如何開發(fā)和保護東北地區(qū)的森林呢?
(3)師生討論,提升思維深度。教師引領學生將討論由農業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農業(yè)結構不合理、農業(yè)技術落后等深層問題,提升了學生思維的深度。(4)角色體驗,突破難點落實重點。在農民與保護區(qū)工作人員的角色體驗活動中,學生們嘗試換位思考,在沖突與交鋒中,在教師的引領下,重新認識環(huán)境保護與區(qū)域經(jīng)濟發(fā)展的關系,在情感體驗中加深對可持續(xù)發(fā)展內涵的理解,小沖突凸顯大矛盾是本課設計的創(chuàng)新之處。2.注重對地理問題的探究,突出地理學科本質。地理學科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學中應該把握的基本特征,也是我們應當把握的地理學科的本質特征,因此在本節(jié)課的設計中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學科的本質。