提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中地理選修2荒漠化的成因與防治教案

  • 人教版新課標小學數(shù)學六年級上冊百分數(shù)的一般應用說課稿2篇

    人教版新課標小學數(shù)學六年級上冊百分數(shù)的一般應用說課稿2篇

    (一)說教材《百分數(shù)的一般應用題》是在學生學過用分數(shù)解決問題和百分數(shù)的意義、百分數(shù)和分數(shù)、小數(shù)的互化的基礎上進行教學的。主要內(nèi)容是求常見的百分率,也就是求一個數(shù)是另一個數(shù)的百分之幾的實際問題,這種問題與求一個數(shù)是另一個數(shù)的幾分之幾的問題相同。所以求常見的百分率的思路和方法與分數(shù)解決問題大致相同。通過這部分教學,既加深了學生對百分數(shù)的認識,又加強了知識間的聯(lián)系。這部分教材在安排上有以下一些特點:1、從學生已有的知識和生活經(jīng)驗出發(fā),幫助學生理解數(shù)學。2、設置數(shù)學活動生活情境,培養(yǎng)學生的解決問題意識和探究精神。(二)說學生對學生來說,利用已有的知識和生活經(jīng)驗,依據(jù)數(shù)量關系列式解答并不困難,但要求學生找準誰和誰比,很重要。二、說教學目標與重難點根據(jù)以上分析,我確定了本節(jié)課的教學目標如下:1、使學生加深對百分數(shù)的認識,理解生活中的百分率的含義,掌握求百分率的方法。2、依據(jù)分數(shù)與百分數(shù)應用題的內(nèi)在聯(lián)系,培養(yǎng)學生的遷移類推能力和數(shù)學的應用意識3、讓學生在具體的情況中感受百分數(shù)來源于生活實際,在應用中體驗數(shù)學的價值。重點:解答求一個數(shù)是另一個數(shù)的百分之幾的應用題。

  • 人教版新課標小學數(shù)學六年級上冊比的意義說課稿2篇

    人教版新課標小學數(shù)學六年級上冊比的意義說課稿2篇

    為什么B和C的答案都對呢?(因為比還可以寫成分數(shù)的形式,但是讀還是讀做幾比幾。)4、判斷:(1)小明今年10歲,爸爸37歲,父親和兒子的年齡比是10∶37。(2)一項工程,甲單獨做要7天完成,乙單獨做要5天完成,甲乙兩人的工作效率比是7∶5。(3)大卡車的載重量是6噸,小卡車的載重量是3噸,大小卡車載重量的比是2。【2】第二層練習1、寫出比值是2的比?!?】隨機練習(看時間情況定)小明今年12歲,是六年一班學生,該班共有42個學生,小明爸爸今年38歲,在保險公司上班,每月工資1000元,年薪12000元,小明媽媽每月工資800元,年薪9600元,她所在單位有職工24人。要求:根據(jù)題目中提供的條件,尋找合適的量,說出兩個數(shù)之間的比。五、課堂總結,拓展延伸。1、這節(jié)課學習了什么知識?你有什么收獲?2、你能說出一些生活中的關于比的例子嗎?(學生舉例)

  • 人教版新課標小學數(shù)學六年級上冊圓的周長說課稿2篇

    人教版新課標小學數(shù)學六年級上冊圓的周長說課稿2篇

    多年的小學教學經(jīng)驗告訴我:小學高年級的學生已有一定的自學能力,關鍵是看我們設置的情景和學生的生活是不是緊密聯(lián)系,是不是喚起了學生的已有表象,并不和使用多種媒體有絕對聯(lián)系。所以在學習例題中我引導學生自主探討,從中發(fā)現(xiàn)問題,提出問題,最后獨立解決問題,從而訓練學生數(shù)學語言表達能力,發(fā)展學生的創(chuàng)造性思維。⒋質疑問難。㈣新知總結對上面所學知識,教師引導學生作一次歸納總結,讓學生明確要求圓周長時,必須設法求得圓的直徑或半徑。這樣使學生對求圓周長有明確的認識,進一步深化重點。㈤新知運用國家教委加強與改進小學數(shù)學教學的意見中提出:基礎訓練是使學生融會貫通地掌握知識,形成熟練技能和發(fā)展智力的重要手段。所以在本節(jié)練習中我以基礎練習為主,適當補充了提高練習。

  • 人教版新課標小學數(shù)學六年級上冊圓的認識說課稿2篇

    人教版新課標小學數(shù)學六年級上冊圓的認識說課稿2篇

    學生的學習活動是一個生動活潑而富有個性的過程,為了把學生探索的陣地從課堂延伸到課外,引導學生主動地應用所學的知識和方法解決實際問題。我又設計了以下練習題:1、腦筋樂園:學校田徑運動會即將舉行,你有辦法幫學校在操場上畫出一個半徑為50米的圓嗎?2、(1)應用圓的知識解釋下列現(xiàn)象,并寫出來。為什么井蓋也得做成圓形的?人們在圍觀的時,為什么會自然地圍成圓形?(2)搜集有關圓的資料。貼到教室的數(shù)學角上,大家共享。3、畫出各種大小、不同顏色的圓,組合出一幅美麗的圖畫。(設計意圖)將學生探索的陣地從課堂延伸到課外,引導學生主動地應用所學知識和方法解決實際問題。(我認為把本句提前,這里刪去,這樣顯得更連貫)(五)全課總結1、讓學生談收獲,進行自我評價。2、我對整節(jié)課進行知識要點歸納和對學生學習情況進行評價。(這樣總結,我注重學生的自我評價,自我體驗和個性發(fā)展。即學生情感的體驗和收獲)(我認為藍色字那句可刪去)

  • 人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    本節(jié)內(nèi)容是復數(shù)的三角表示,是復數(shù)與三角函數(shù)的結合,是對復數(shù)的拓展延伸,這樣更有利于我們對復數(shù)的研究。1.數(shù)學抽象:利用復數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數(shù)學建模:掌握復數(shù)的三角形式;4.直觀想象:利用復數(shù)三角形式解決一系列實際問題;5.數(shù)學運算:能夠正確運用復數(shù)三角形式計算復數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導過程—得出結論—例題講解—練習鞏固的過程,讓學生認識到數(shù)學知識的邏輯性和嚴密性。復數(shù)的三角形式、復數(shù)三角形式乘法、除法法則及其幾何意義舊知導入:問題一:你還記得復數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復數(shù)呢?如何表示?

  • 人教A版高中數(shù)學必修二總體離散程度的估計教學設計

    人教A版高中數(shù)學必修二總體離散程度的估計教學設計

    問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。

  • 人教A版高中數(shù)學必修二總體取值規(guī)律的估計教學設計

    人教A版高中數(shù)學必修二總體取值規(guī)律的估計教學設計

    可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。

  • 人教A版高中數(shù)學必修一不同增長函數(shù)的差異教學設計(1)

    人教A版高中數(shù)學必修一不同增長函數(shù)的差異教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學習了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學習的一次梳理和總結。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質,完成函數(shù)增長快慢的認識。既是對三種函數(shù)學習的總結,也為后續(xù)導數(shù)的學習做了鋪墊。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;3、在認識函數(shù)增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,探索數(shù)學。 a.數(shù)學抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;

  • 人教A版高中數(shù)學必修一對數(shù)函數(shù)的概念教學設計(1)

    人教A版高中數(shù)學必修一對數(shù)函數(shù)的概念教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學習中讓學生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。3、在學習對數(shù)函數(shù)過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,感受數(shù)學、理解數(shù)學、探索數(shù)學,提高學習數(shù)學的興趣。

  • 人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質教學設計(1)

    人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質;能利用對數(shù)函數(shù)的圖像與性質來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質,對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。

  • 人教A版高中數(shù)學必修一函數(shù)的表示法教學設計(1)

    人教A版高中數(shù)學必修一函數(shù)的表示法教學設計(1)

    本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數(shù)的三種表示方法及其簡單應用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應用;1.數(shù)學抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;

  • 人教A版高中數(shù)學必修一函數(shù)模型的應用教學設計(1)

    人教A版高中數(shù)學必修一函數(shù)模型的應用教學設計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內(nèi)容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;

  • 人教A版高中數(shù)學必修一集合的基本運算教學設計(1)

    人教A版高中數(shù)學必修一集合的基本運算教學設計(1)

    本節(jié)是新人教A版高中數(shù)學必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內(nèi)容打下了基礎。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當?shù)膯栴}情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關系及運算。 1.數(shù)學抽象:集合交集、并集、補集的含義;2.數(shù)學運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關系及運算。

  • 人教A版高中數(shù)學必修一集合間的基本關系教學設計(1)

    人教A版高中數(shù)學必修一集合間的基本關系教學設計(1)

    本節(jié)內(nèi)容來自人教版高中數(shù)學必修一第一章第一節(jié)集合第二課時的內(nèi)容。集合論是現(xiàn)代數(shù)學的一個重要基礎,是一個具有獨特地位的數(shù)學分支。高中數(shù)學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數(shù)概念的基礎知識和必備工具。本小節(jié)內(nèi)容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關系的基礎上,進一步學習集合與集合之間的關系,同時也是下一節(jié)學習集合間的基本運算的基礎,因此本小節(jié)起著承上啟下的關鍵作用.通過本節(jié)內(nèi)容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數(shù)學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數(shù)形結合思想。

  • 人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(1)

    人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(1)

    四、小結1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數(shù)的相關性質求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質,以及誘導公式、同角三角函數(shù)基本關系、和(差)角公式的綜合應用,也是函數(shù)思想的具體體現(xiàn). 如何科學的把實際問題轉化成數(shù)學問題,如何選擇自變量建立數(shù)學關系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學關系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預習下節(jié)課內(nèi)容學生根據(jù)課堂學習,自主總結知識要點,及運用的思想方法。注意總結自己在學習中的易錯點;

  • 人教A版高中數(shù)學必修二古典概型和概率的基本性質教學設計

    人教A版高中數(shù)學必修二古典概型和概率的基本性質教學設計

    新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。

  • 人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(1)

    人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(1)

    《數(shù)學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應用,同時又為高中數(shù)學中函數(shù)與方程思想、數(shù)形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點,從而求得方程的近似解. a.數(shù)學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;

  • 人教A版高中數(shù)學必修二空間點、直線、平面之間的位置關系教學設計

    人教A版高中數(shù)學必修二空間點、直線、平面之間的位置關系教學設計

    9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關系?并畫圖說明.解: 直線a與直線c的位置關系可以是平行、相交、異面.如圖(1)(2)(3).總結:判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).

  • 人教A版高中數(shù)學必修二事件的相互獨立性教學設計

    人教A版高中數(shù)學必修二事件的相互獨立性教學設計

    問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。

  • 人教A版高中數(shù)學必修二向量的減法運算教學設計

    人教A版高中數(shù)學必修二向量的減法運算教學設計

    新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

上一頁123...238239240241242243244245246247248249下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!