提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中地理必修2以種植業(yè)為主的農(nóng)業(yè)地域類型教案

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 《拿來主義》說課稿(四) 統(tǒng)編版高中語文必修上冊(cè)

    《拿來主義》說課稿(四) 統(tǒng)編版高中語文必修上冊(cè)

    【教學(xué)目標(biāo)】根據(jù)課程標(biāo)準(zhǔn)的要求,結(jié)合魯迅雜文的特點(diǎn)以及學(xué)生的實(shí)際情況,制定如下目標(biāo):⑴知識(shí)與技能目標(biāo):把握文章思路、結(jié)構(gòu)和觀點(diǎn);揣摩魯迅雜文犀利、幽默、詼諧的語言風(fēng)格。⑵過程與方法目標(biāo):學(xué)習(xí)運(yùn)用因果論證和比喻論證的寫作手法。⑶情感態(tài)度及價(jià)值觀目標(biāo):正確對(duì)待中外文化遺產(chǎn),樹立辯證唯物主義和歷史唯物主義的觀點(diǎn)。【教學(xué)重難點(diǎn)】根據(jù)教學(xué)目標(biāo)和學(xué)生實(shí)情,確定教學(xué)重點(diǎn)如:學(xué)習(xí)因果論證的寫作方法,體會(huì)作者推理的邏輯性;揣摩魯迅雜文犀利、幽默、詼諧的語言風(fēng)格。確定教學(xué)難點(diǎn)如:學(xué)習(xí)掌握比喻論證的方法;明確為什么要實(shí)行“拿來主義”,著重認(rèn)識(shí)送去主義的實(shí)質(zhì)和危害。二、教學(xué)方法教學(xué)應(yīng)堅(jiān)持“以學(xué)生為主體”的原則,盡可能發(fā)揮學(xué)生學(xué)習(xí)的能動(dòng)性和主動(dòng)性,培養(yǎng)學(xué)生獨(dú)立思考的能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,因此本文采用“疑問教學(xué)法”相對(duì)合適。

  • 《裝在套子里的人》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    《裝在套子里的人》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    8、板書裝在套子里的人別里科夫的形象——有形的套子套己——無形的套子套人第二課時(shí)合作探究:目標(biāo)挖掘主題及現(xiàn)實(shí)意義。問題設(shè)置,銜接上節(jié)課內(nèi)容,層層深入。1、結(jié)合上節(jié)課別里科夫的形象分析:他的思想被什么套住,其悲劇原因在哪?(根據(jù)人物形象的分析與社會(huì)背景的了解,直擊主題。)沙皇腐朽的專制統(tǒng)治套住了他的思想,沙皇的清規(guī)戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社會(huì)環(huán)境,又讓他成為沙皇統(tǒng)治的捍衛(wèi)者。2、他戀愛的情節(jié)以及科瓦連科這兩個(gè)人物的塑造的意義?(從人物以及主題入手,推翻沙皇的腐朽反動(dòng)的統(tǒng)治,必須是每一個(gè)人都敢于打破套子,喚醒革新,更新觀念,拒絕腐朽。)別里科夫渴望打破束縛,也想革新,而科瓦連科兩個(gè)人物體現(xiàn)朝氣活潑,以及勇于打破常規(guī)束縛的勇氣,為革新升起了一片曙光。3、塑造別里科夫的手法,除了一般刻畫人物方法外,還有什么方法?

  • 《立在地球邊上放號(hào)》《紅燭》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《立在地球邊上放號(hào)》《紅燭》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    四、 學(xué)法指導(dǎo)1、查閱資料,了解詩人寫這首詩的處境,通過知人論世,理解詩歌。2、反復(fù)誦讀,聯(lián)系具體語境,品味詩歌的內(nèi)涵,感受詩歌的意蘊(yùn)。3、欣賞詩人相關(guān)的其他作品及名言,在理解、感受詩歌的基礎(chǔ)上,領(lǐng)會(huì)詩人在詩歌中傳達(dá)出來的精神,樹立自我意識(shí)。五、教學(xué)過程環(huán)節(jié)一 常識(shí)補(bǔ)充1、文學(xué)革命:開始于1917年。它是晚清文學(xué)改良運(yùn)動(dòng)在新的歷史條件下的發(fā)展,是適應(yīng)以思想革命為主要內(nèi)容的新文化運(yùn)動(dòng)而發(fā)生的。是新文化運(yùn)動(dòng)的一個(gè)組成部分,對(duì)封建思想的批判必然地轉(zhuǎn)向?qū)Ψ饨ㄖ髁x文學(xué)的攻擊,反對(duì)文言,提倡白話,反對(duì)舊文學(xué),是提倡新文學(xué)的一場(chǎng)文學(xué)革命運(yùn)動(dòng)。在中國(guó)文學(xué)史上豎起一個(gè)鮮明的界碑,標(biāo)示著古典文學(xué)的結(jié)束,現(xiàn)代文學(xué)的起始。主要從詩歌、小說、戲劇、散文四個(gè)文學(xué)領(lǐng)域開展。2、① 現(xiàn)代詩歌:指“五四運(yùn)動(dòng)”至中華人民共和國(guó)成立以來的詩歌。中國(guó)近現(xiàn)代詩歌的主體新詩,誕生于“五四”新文化運(yùn)動(dòng)。

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(1)

    本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).

  • 人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計(jì)

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?

  • 第四單元《教學(xué)設(shè)計(jì)》 說課稿  2021—2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    第四單元《教學(xué)設(shè)計(jì)》 說課稿 2021—2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    (六)說教學(xué)策略1.專題性海量的媒介信息必須加以選擇或者整合,以項(xiàng)目為依據(jù),進(jìn)行信息篩選,形成專題性閱讀與交流;培養(yǎng)學(xué)生對(duì)文本信息“化零為整”的能力,提升跨媒介閱讀與交流學(xué)習(xí)的充實(shí)感。2.情境化情境教學(xué)應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時(shí)代氣息的內(nèi)容,與生活經(jīng)驗(yàn)更加貼合,對(duì)學(xué)生的語言建構(gòu)與運(yùn)用有所提升,在情境中能夠有效地進(jìn)行交流。3.任務(wù)化以任務(wù)為導(dǎo)向的序列化學(xué)習(xí),可以為學(xué)生構(gòu)建學(xué)習(xí)路線圖、學(xué)習(xí)框架等具體任務(wù)引導(dǎo);或以跨媒介的認(rèn)識(shí)與應(yīng)用為任務(wù)的設(shè)置引導(dǎo);甚至以閱讀和交流作為序列化安排的實(shí)踐引導(dǎo)。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實(shí)現(xiàn)對(duì)信息進(jìn)行“深加工”,多種媒介的信息整合只為一個(gè)核心教學(xué)內(nèi)容服務(wù)。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學(xué)生對(duì)學(xué)習(xí)內(nèi)容立體化和具體化的感悟,提升學(xué)生的審美能力。

  • 人教A版高中數(shù)學(xué)必修一函數(shù)y=Asin(ωχ+φ)教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)y=Asin(ωχ+φ)教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對(duì)函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜、由特殊到一般的化歸思想;并通過對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問題的主要矛盾來解決問題的基本思想方法;通過對(duì)參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識(shí)圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。

  • 人教A版高中數(shù)學(xué)必修二立體圖形直觀圖教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二立體圖形直觀圖教學(xué)設(shè)計(jì)

    1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測(cè)具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長(zhǎng)度不變,平行于Y軸的線段,在直觀圖中長(zhǎng)度為原來一半。4.對(duì)斜二測(cè)方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測(cè)畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測(cè)畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測(cè)畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測(cè)畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長(zhǎng),豎直線段減半;(4)整理.簡(jiǎn)言之:“橫不變,豎減半,平行、重合不改變?!?/p>

  • 人教A版高中數(shù)學(xué)必修二平面與平面平行教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二平面與平面平行教學(xué)設(shè)計(jì)

    1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對(duì)邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長(zhǎng)方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。

  • 人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計(jì)

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號(hào)語言:任意a?α,都有l(wèi)⊥a?l⊥α.

  • 人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計(jì)

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.

  • 人教A版高中數(shù)學(xué)必修二直線與直線垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二直線與直線垂直教學(xué)設(shè)計(jì)

    6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長(zhǎng)度.解:取BC中點(diǎn)O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=

  • 《故都的秋》《荷塘月色》《我與地壇》群文閱讀說課稿 2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《故都的秋》《荷塘月色》《我與地壇》群文閱讀說課稿 2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    (2) 中國(guó)文人的悲秋情結(jié)。3.《荷塘月色》中,作者為什么要離開家來到荷塘散步?4. 思考:作者的心里為何“頗不寧靜?”(教師補(bǔ)充:寫作背景)5. 出門散步后,作者的心情發(fā)生變化了嗎? 有怎樣的變化?6.思考討論:為什么作者說“我”與“地壇”間有著宿命般的緣分,二者有何相似之處?(閱讀1-5段)7.思考:作者從他同病相憐的“朋友“身上理解了怎樣的”意圖“?三、課堂總結(jié)李白說:“天地者,萬物之逆旅也?!比松缤粓?chǎng)旅行,在人生的旅途中,時(shí)而高山,時(shí)而峽谷,時(shí)而坦途,時(shí)而歧路。我們或放歌,或悲哭,然而,大自然始終以其不變的姿勢(shì)深情地看著我們,而我們,也應(yīng)該學(xué)會(huì)在與自然的深情對(duì)望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁達(dá)夫,荷塘月色之于朱自清,地壇之于史鐵生,他們從中或得到心靈的慰藉、精神的寄托,或得到生存的智慧與勇氣,最終完成精神的超脫。

  • 人教A版高中數(shù)學(xué)必修二有限樣本空間與隨機(jī)事件事件的關(guān)系和運(yùn)算教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二有限樣本空間與隨機(jī)事件事件的關(guān)系和運(yùn)算教學(xué)設(shè)計(jì)

    新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀察稱為隨機(jī)試驗(yàn),簡(jiǎn)稱試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過充分?jǐn)嚢韬髶u出一個(gè)球,觀察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱為樣本點(diǎn),全體樣本點(diǎn)的集合稱為試驗(yàn)E的樣本空間。

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;

上一頁123...505152535455565758596061下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!