新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
【設計思路】新課程十分強調(diào)科學探究在科學課程中的作用,應該說科學探究是這次課程改革的核心。我覺得:科學探究不一定是要讓學生純粹地通過實驗進行探究,應該說科學探究是一種科學精神,學生只要通過自己的探索和體驗,變未知為已知,這樣的教學活動也是科學探究。本節(jié)課是概念教學課,讓學生純粹地通過實驗進行探究是不太合適的。但通過學生自己的探索和體驗,變未知為已知還比較合適。本節(jié)課的設計就是基于這樣的出發(fā)點,在引出加速度的概念時低臺階,步步深入,充分激活學生的思維,是學生思維上的探究。通過復習前邊速度時間圖像,從而得到從圖像上得到加速度的方法,為加深加速度概念和相關(guān)知識的理解有配套了相應練習題目,做到強化練習的目的?!窘虒W目標】知識與技能1.理解加速度的意義,知道加速度是表示速度變化快慢的物理量.知道它的定義、公式、符號和單位,能用公式a=△v/△t進行定量計算.2.知道加速度與速度的區(qū)別和聯(lián)系,會根據(jù)加速度與速度的方向關(guān)系判斷物體是加速運動還是減速運動.3.能從勻變速直線運動的v—t圖象理解加速度的意義.
三、作出速度-時間圖像(v-t圖像)1、確定運動規(guī)律最好辦法是作v-t圖像,這樣能更好地顯現(xiàn)物體的運動規(guī)律。2、x y x1 x2 y2 y1 0討論如何在本次實驗中描點、連線。(以時間t為橫軸,速度v為縱軸,建立坐標系,選擇合適的標度,把剛才所填表格中的各點在速度-時間坐標系中描出。注意觀察和思考你所描畫的這些點的分布規(guī)律,你會發(fā)現(xiàn)這些點大致落在同一條直線上,所以不能用折線連接,而用一根直線連接,還要注意連線兩側(cè)的點數(shù)要大致相同。)3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當中仍應該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標系中,直線的斜率
【設計思路】新課程十分強調(diào)科學探究在科學課程中的作用,應該說科學探究是這次課程改革的核心。我覺得:科學探究不一定是要讓學生純粹地通過實驗進行探究,應該說科學探究是一種科學精神,學生只要通過自己的探索和體驗,變未知為已知,這樣的教學活動也是科學探究。本節(jié)課是概念教學課,讓學生純粹地通過實驗進行探究是不太合適的。但通過學生自己的探索和體驗,變未知為已知還比較合適。本節(jié)課的設計就是基于這樣的出發(fā)點,在引出加速度的概念時低臺階,步步深入,充分激活學生的思維,是學生思維上的探究。通過復習前邊速度時間圖像,從而得到從圖像上得到加速度的方法,為加深加速度概念和相關(guān)知識的理解有配套了相應練習題目,做到強化練習的目的。【教學目標】知識與技能1.理解加速度的意義,知道加速度是表示速度變化快慢的物理量.知道它的定義、公式、符號和單位,能用公式a=△v/△t進行定量計算.2.知道加速度與速度的區(qū)別和聯(lián)系,會根據(jù)加速度與速度的方向關(guān)系判斷物體是加速運動還是減速運動.
3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當中仍應該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標系中,直線的斜率四、實踐與拓展例1、在探究小車速度隨時間變化規(guī)律的實驗中,得到一條記錄小車運動情況的紙帶,如圖所示。圖中A、B、C、D、E為相鄰的計數(shù)點,相鄰計數(shù)點的時間間隔為T=0.1s。⑴根據(jù)紙帶上的數(shù)據(jù),計算B、C、D各點的數(shù)據(jù),填入表中。
一、描述圓周運動的物理量 探究交流 打籃球的同學可能玩過轉(zhuǎn)籃球,讓籃球在指尖旋轉(zhuǎn),展示自己的球技,如圖5-4-1所示.若籃球正繞指尖所在的豎直軸旋轉(zhuǎn),那么籃球上不同高度的各點的角速度相同嗎?線速度相同嗎? 【提示】 籃球上各點的角速度是相同的.但由于不同高度的各點轉(zhuǎn)動時的圓心、半徑不同,由v=ωr可知不同高度的各點的線速度不同.
(2) 中國文人的悲秋情結(jié)。3.《荷塘月色》中,作者為什么要離開家來到荷塘散步?4. 思考:作者的心里為何“頗不寧靜?”(教師補充:寫作背景)5. 出門散步后,作者的心情發(fā)生變化了嗎? 有怎樣的變化?6.思考討論:為什么作者說“我”與“地壇”間有著宿命般的緣分,二者有何相似之處?(閱讀1-5段)7.思考:作者從他同病相憐的“朋友“身上理解了怎樣的”意圖“?三、課堂總結(jié)李白說:“天地者,萬物之逆旅也。”人生,如同一場旅行,在人生的旅途中,時而高山,時而峽谷,時而坦途,時而歧路。我們或放歌,或悲哭,然而,大自然始終以其不變的姿勢深情地看著我們,而我們,也應該學會在與自然的深情對望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁達夫,荷塘月色之于朱自清,地壇之于史鐵生,他們從中或得到心靈的慰藉、精神的寄托,或得到生存的智慧與勇氣,最終完成精神的超脫。
一、溫故導入好的導入未成曲調(diào)先有情,可以取得事半功信的教學效果。對于本節(jié)課我以溫故知新的方式導入,以蘇軾的《赤壁賦》和《念奴嬌》引導學生感受蘇軾的豪放和闊達,從學生熟悉領(lǐng)域出發(fā),引導學生探究他內(nèi)心深處的“柔情似水”,感受他的“十年生死”之夢。二、誦讀感知(亮點一)《語文課程標準》中建議“教師要充分關(guān)注學生閱讀需求的多樣性,閱讀心理的獨特性”。所以在本環(huán)節(jié)我將綜合運用聽、讀、問、答四種方式教學。首先通過多媒體聽讀,激發(fā)學生學習興趣,直觀感受蘇軾的痛徹心扉和傷心欲絕。其次指定學生誦讀,并在誦讀之后,由學生點評,加深學生對于斷句、輕重、快慢的理解,進一步感受本詞的凄苦哀怨。最后配樂讀,利用凄清的音樂引導學生通過自己的誦讀來表現(xiàn)詩中所蘊含的真摯之感。設計意圖:通過多種閱讀方法,反復閱讀本詞,引導學生由淺入深的理解本詞的思想內(nèi)容和藝術(shù)風格,初步感受作者對妻子的摯愛之情和他的痛徹心扉,加深學生對文章的理解。
這幾段內(nèi)容傳達出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,愛護大自然”的主旨內(nèi)涵,因此讓學生通過自由朗讀的方式,再次體會馮至對這個消逝了的山村的細致的美好的描繪,感悟馮至傳達出的對生命,對自然的理解和思考。5.最后一個自然段的解讀依然是交給學生,先齊讀課文,再讓學生自主分享自己的體會或疑惑。但在這一環(huán)節(jié)我也設計了兩個我認為必須解答的兩個問題,一是怎么理解“在風雨如晦的時刻”;二是“意味不盡的關(guān)聯(lián)”是指什么。我認為這兩個問題一個涉及到寫作背景,一個涉及到對全文主旨的一個整體把握,能夠進一步幫助學生理解散文的深刻內(nèi)涵和主旨,讓學生有意識的在閱讀散文過程中通過背景知識進行理解。既尊重學生的個性化解讀,又能夠讓學生有意義學習,完成預設的教學目標。如果學生沒有提到這兩處,那我就需要做出補充。
答案:銅車馬的輝煌,來自原料的精挑細選、工藝的精巧極致和工匠的精心雕琢??梢哉f,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認為“工匠精神”有著怎樣的現(xiàn)實意義?觀點一:工匠精神在企業(yè)層面,可以認為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導者精神的動力。第三,執(zhí)著是企業(yè)走得長久的底氣。改革開放40 多年來,我國涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟效益。這正是經(jīng)濟發(fā)展的隱憂所在。觀點二:工匠精神在員工層面,就是一-種認真精神、敬業(yè)精神。其核心是: 不僅僅把工作當作賺錢養(yǎng)家糊口的工具,而是樹立起對職業(yè)敬畏、對工作執(zhí)著、對產(chǎn)品負責的態(tài)度,極度注重細節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗。我國制造業(yè)存在大而不強、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。
王安石,字介甫,號半山。北宋著名政治家、思想家、文學家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭先。”傳世文集有《王臨川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長,世人哄傳之詩句莫過于《泊船瓜洲》中的“春風又綠江南岸,明月何時照我還?!鼻矣忻鳌豆鹬ο恪返?。介紹之后設置這樣的導入語:今天我們共同走進王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學生初步了解將要學到的基本內(nèi)容,了解文章大意及思想意圖,使學生對課文內(nèi)容形成整體感知。首先,我會讓學生根據(jù)課前預習,出聲誦讀課文,同時注意朗讀的快慢、停頓、語調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會引導學生談談他感受。學生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢,有對景物的贊美和對歷史的感喟。
(一)導入新課“時勢造英雄”,惡劣的環(huán)境造就名詩名篇。正因如此,懷才不遇于古人是恒久的情感素材。同學們,請大家回憶我們學過哪些抒發(fā)作者懷才不遇的詩詞?(二)解釋題意擬:仿照,模擬《行路難》,是樂府雜曲,本為漢代歌謠,晉人袁山松改變其音調(diào),創(chuàng)制新詞,流行一時。 鮑照《擬行路難》共十八首,歌詠人世的種種憂慮,寄寓悲憤,今天我們學習的是其中第四首。(三)作者簡介、寫作背景門閥制度之下,“上品無寒門,下品無世族”,出身寒微的文人往往空懷一腔熱忱,卻報國無門,不得不在壯志未酬的遺恨中坐視時光流逝。即使躋身仕途,也多是充當幕僚、府掾,備受壓抑,在困頓坎坷中徒然掙扎,只落得身心交瘁。
一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊古詩詞誦讀單元,此詞通過對金陵景物的贊美和歷史興亡的感喟,寄托了作者對當時朝政的擔憂和對國家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱名篇。二、學情分析高中一年級的學生已具有一定的詩歌閱讀鑒賞能力,對學生來說,最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學過程中著重落實“讀”,通過多樣化的“讀”,提升對詩歌“美”的感悟鑒賞能力。三、教學目標從課程標準中“全面提高學生語文素養(yǎng)”的基本理念出發(fā),我設計了以下教學目標:1.語言建構(gòu)與運用:疏通疑難字詞,讀懂詩句體會詞的誦讀要領(lǐng)。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學生認識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學生掌握對數(shù)式與指數(shù)式的互化;通過實例推導對數(shù)的運算性質(zhì),讓學生準確地運用對數(shù)運算性質(zhì)進行運算,學會運用換底公式。培養(yǎng)學生數(shù)學運算、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。
學生已經(jīng)學習了指數(shù)運算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運算性質(zhì),推導對數(shù)的運算性質(zhì),再學習利用對數(shù)的運算性質(zhì)化簡求值。課程目標1、通過具體實例引入,推導對數(shù)的運算性質(zhì);2、熟練掌握對數(shù)的運算性質(zhì),學會化簡,計算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的運算性質(zhì);2.邏輯推理:換底公式的推導;3.數(shù)學運算:對數(shù)運算性質(zhì)的應用;4.數(shù)學建模:在熟悉的實際情景中,模仿學過的數(shù)學建模過程解決問題.重點:對數(shù)的運算性質(zhì),換底公式,對數(shù)恒等式及其應用;難點:正確使用對數(shù)的運算性質(zhì)和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.