提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

九年級上冊道德與法治富強與創(chuàng)新3作業(yè)設(shè)計

  • 人教版新課標小學(xué)數(shù)學(xué)二年級上冊加、減法估算 說課稿3篇

    人教版新課標小學(xué)數(shù)學(xué)二年級上冊加、減法估算 說課稿3篇

    2、自主探究,學(xué)習(xí)例題(1)猜價格,感受新知課件演示樂樂一家來到商場的情景,讓學(xué)生分別猜一猜熱水瓶、燒水壺和杯子的價錢,在出示杯子的時候,我讓學(xué)生算一算6個杯子,每個5元,一共需要多少錢?然后老師用一個普通討論者的口氣說:“買一整套會比單買一個要便宜一些,只要24元就可以買到了?!保?)同桌互相交流,培養(yǎng)合作精神先讓學(xué)生任選兩種物品和同桌互相說一說大約需要多少錢?再請個別學(xué)生拿著教鞭到黑板前指著自己想買的東西說一說我選了什么,大約多少錢,是怎樣估計的。(3)小組討論,學(xué)習(xí)例題1)、課件出示例題:媽媽打算買這三種生活用品,100元夠嗎?2)、學(xué)生獨立思考,再小組討論交流;3)、小組總結(jié),匯報結(jié)果:請小組代表到黑板上展示學(xué)習(xí)過程,并引導(dǎo)學(xué)生用自己的語言說出估算方法和結(jié)果,對不同的方法進行鼓勵;

  • 人教版新課標小學(xué)數(shù)學(xué)二年級上冊統(tǒng)計 說課稿3篇

    人教版新課標小學(xué)數(shù)學(xué)二年級上冊統(tǒng)計 說課稿3篇

    統(tǒng)計是一種數(shù)學(xué)思想,也是認識客觀事物常用的一種方法。讓學(xué)生學(xué)習(xí)統(tǒng)計,要引導(dǎo)他們經(jīng)歷收集、整理數(shù)據(jù)的過程,精力把整理出來的數(shù)據(jù)用圖表形式表現(xiàn)出來的過程,經(jīng)歷對統(tǒng)計的數(shù)據(jù)進行分析、判斷的過程,從中理解并掌握一些有關(guān)統(tǒng)計的基礎(chǔ)知識和基本技能,學(xué)習(xí)解決實際問題。(一)新的課程標準要求我們的數(shù)學(xué)課程應(yīng)體現(xiàn)基礎(chǔ)性、普及性和發(fā)展性。要強調(diào)從學(xué)生已有的生活經(jīng)驗出發(fā),要使學(xué)生學(xué)有價值的數(shù)學(xué),這些內(nèi)容要有利于學(xué)生主動地進行觀察、實驗、猜測、驗證、理解與交流等數(shù)學(xué)活動。(二)本課的教學(xué)通過學(xué)生積極參與數(shù)學(xué)活動,合作交流,力求體現(xiàn)人人學(xué)有價值的數(shù)學(xué),體現(xiàn)數(shù)學(xué)就在我們的身邊,與我們的學(xué)習(xí)生活緊密相聯(lián),體會統(tǒng)計的目的和意義,掌握統(tǒng)計的方法,體驗數(shù)學(xué)學(xué)習(xí)的樂趣。

  • 人教版新課標小學(xué)數(shù)學(xué)六年級上冊扇形統(tǒng)計圖說課稿3篇

    人教版新課標小學(xué)數(shù)學(xué)六年級上冊扇形統(tǒng)計圖說課稿3篇

    三、情感與態(tài)度目標教學(xué)重點:在合作討論的過程中體會數(shù)據(jù)在現(xiàn)實生活中的作用,理解扇形統(tǒng)計圖的特點,并能從中發(fā)現(xiàn)信息。教學(xué)難點:能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。二、學(xué)情分析本單元的教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。三、設(shè)計理念和教法分析1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者?!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己收集信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。2、運用探究法。探究的方法屬于啟發(fā)式教學(xué),探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生收集資料,獲取信息并合作交流。

  • 人教版新課標小學(xué)數(shù)學(xué)四年級上冊數(shù)的產(chǎn)生、十進制計數(shù)法說課稿

    人教版新課標小學(xué)數(shù)學(xué)四年級上冊數(shù)的產(chǎn)生、十進制計數(shù)法說課稿

    2、十進制計數(shù)法(1)、師提問:“同學(xué)們,我們在前幾節(jié)課已經(jīng)學(xué)習(xí)了到萬級為止的數(shù),但是,還有比億更大的數(shù)存在著,(出示數(shù)位順序表):引導(dǎo)學(xué)生利用已有的知識進行類推,將已學(xué)過的億以內(nèi)數(shù)位順序表擴展到“千億”。教師在計數(shù)器上現(xiàn)場貼上億級的數(shù)位。(教師向?qū)W生說明:還有比千億更大的數(shù),由于不常用,暫時不學(xué),因此在數(shù)為順序表后面用“…”,表示后面還有其他數(shù)位。)(2)、教師提問:“那么,我們已經(jīng)學(xué)習(xí)了哪些計數(shù)單位呢?”(3)、小組討論:“每相鄰的兩個計數(shù)單位之間的進率是多少?”請同學(xué)們自己得出結(jié)論:每相鄰的兩個計數(shù)單位之間的進率都是十。最后,教師給出“十進制計數(shù)法”的名稱,在黑板上板書。(三)、課堂總結(jié)1、教師:“同學(xué)們,今天我們一起學(xué)習(xí)了?”教師請同學(xué)們接下去說完整:“自然數(shù)和十進制計數(shù)法?!?/p>

  • 初一上冊數(shù)學(xué)工作計劃

    初一上冊數(shù)學(xué)工作計劃

    第一章《有理數(shù)》1、本章的主要內(nèi)容:對正、負數(shù)的認識;有理數(shù)的概念及分類;相反數(shù)與絕對值的概念及求法;數(shù)軸的概念、畫法及其與相反數(shù)與絕對值的關(guān)系;比較兩個有理數(shù)大小的方法;有理數(shù)加、減、乘、除、乘方運算法則及相關(guān)運算律;科學(xué)計數(shù)法、近似數(shù)、有效數(shù)字的概念及求法。重點:有理數(shù)加、減、乘、除、乘方運算難點:混合運算的運算順序,對結(jié)果符號的確定及對科學(xué)計數(shù)法、有效數(shù)字的理解。

  • 五年級上冊音樂的教案

    五年級上冊音樂的教案

    (1)聽一遍范唱錄音?! ?2)討論歌曲的歌詞表現(xiàn)的是什么內(nèi)容?(師生共同討論)第一部分實際上只有兩句歌詞:“請把我的歌帶回你的家,請把你的微笑留下”,歌聲與微笑架起了友誼的橋梁。第二部分是引申,描繪了“友誼花開遍地香”的情景。這首歌雖然短小,意義卻不小。

  • 人教版高中地理選修3第五章第一節(jié)設(shè)計旅游活動教案

    人教版高中地理選修3第五章第一節(jié)設(shè)計旅游活動教案

    點撥:旅游地旅游資源的特色不同,可以安排的旅游活動是不一樣的,直接影響對旅游者的吸引力。因此,出游前首先就需要收集旅游地旅游資源的類型、主要游覽景區(qū)、景點的特色等情況。旅游地的時空可達性直接關(guān)系到旅游者從出發(fā)地到旅游地,然后再返回出發(fā)地的費用和時間。一般來說,居住地與旅游地之間的空間距離過大,會使旅行的時間過長、旅行費用過高,經(jīng)濟距離增加,相應(yīng)地降低了旅游者的出游能力。而居住地與旅游地相距遙遠,也意味著兩地之間巨大的環(huán)境差異,這會增加對游客的吸引力。旅游服務(wù)設(shè)施和條件,如旅游交通方式及工具、旅游住宿條件、旅游餐飲的種類和標準、導(dǎo)游服務(wù)、旅行費用等信息也都在一定程度上影響著游客的選擇。圖5.3西藏布達拉宮和圖5.4云南香格里拉兩幅圖片顯示了西藏布達拉宮、云南香格里拉與眾不同的優(yōu)美景觀,吸引了眾多的游客前來觀光旅游,成為近年來國內(nèi)旅游的熱點。

  • 人教版高中數(shù)學(xué)選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計

    由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關(guān),且相關(guān)程度很強。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點圖相比較,線性相關(guān)系數(shù)要精細得多,需要注意的是線性相關(guān)系數(shù)r的絕對值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗線性相關(guān)顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢的異同.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(1)教學(xué)設(shè)計

    4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的均值教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的均值教學(xué)設(shè)計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(2)教學(xué)設(shè)計

    溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結(jié)果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計

    1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標準數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(2)

    課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(2)

    本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學(xué)運算:求函數(shù)零點近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(1)

    《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術(shù)工具計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標 學(xué)科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點,從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;

  • 人教A版高中數(shù)學(xué)必修二向量的減法運算教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二向量的減法運算教學(xué)設(shè)計

    新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進行:減去一個向量相當(dāng)于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質(zhì)上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

上一頁123...394041424344454647484950下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!