1、舉例:2、結(jié)論:(1)物體的運(yùn)動(dòng)軌跡是曲線的運(yùn)動(dòng)叫曲線運(yùn)動(dòng)。(2)曲線運(yùn)動(dòng)中速度方向是時(shí)刻改變的。(二)、曲線運(yùn)動(dòng)方向:1、質(zhì)點(diǎn)在某一點(diǎn)(或某一時(shí)刻)的速度的方向是在曲線的這一點(diǎn)的切線方向。2、曲線運(yùn)動(dòng)中速度方向是時(shí)刻改變的,因此曲線運(yùn)動(dòng)是變速運(yùn)動(dòng)。(三)、曲線運(yùn)動(dòng)條件:1、演示實(shí)驗(yàn):2、結(jié)論:當(dāng)物體所受的合力的方向跟它的速度方向不在同一直線時(shí),物體就做曲線運(yùn)動(dòng)。七、課堂小結(jié):1、運(yùn)動(dòng)軌跡是曲線的運(yùn)動(dòng)叫曲線運(yùn)動(dòng)。2、曲線運(yùn)動(dòng)中速度的方向是時(shí)刻改變的,質(zhì)點(diǎn)在某一點(diǎn)的瞬時(shí)速度的方向在曲線的這一點(diǎn)的切線上。3、當(dāng)合外力F的方向與它的速度方向有一夾角a時(shí),物體做曲線運(yùn)動(dòng)。八、鞏固訓(xùn)練:1、關(guān)于曲線運(yùn)動(dòng),下列說法正確的是()。A:曲線運(yùn)動(dòng)一定是變速運(yùn)動(dòng);B:曲線運(yùn)動(dòng)速度的方向不斷的變化,但速度的大小可以不變;
學(xué)生中存在這樣的問題:既然宇宙間的一切物體都是相互吸引的,那么為什么沒有吸引到一起?為了解決這個(gè)問題,安排了例題2例2、兩物體質(zhì)量都是1kg,相距1m,它們間的萬(wàn)有引力是多少?通過本題,讓學(xué)生認(rèn)識(shí)到一般物體間的引力極小,不用考慮。那么,質(zhì)量很大的天體為什么沒被吸引到一塊?從而引出下節(jié)課題。4.課堂小結(jié):本節(jié)課,從天體運(yùn)動(dòng)出發(fā),通過推理證明,形成理性認(rèn)識(shí),再結(jié)合例題習(xí)題使學(xué)生的理性認(rèn)識(shí)再反饋到具體事實(shí)。形成實(shí)踐-理論-實(shí)踐的認(rèn)知循環(huán),順應(yīng)了認(rèn)知規(guī)律.。本共設(shè)計(jì)了很多問,能讓學(xué)生想的盡量讓學(xué)生想、能學(xué)生說的盡量讓學(xué)生說、能讓學(xué)生做的盡量讓學(xué)生做,全面發(fā)展學(xué)生的各方面能力。再通過作業(yè)和探究性課題使學(xué)生的思維活動(dòng)在時(shí)空上得以延續(xù)。5.布置作業(yè):布置作業(yè)時(shí)刻意安排引入:萬(wàn)有引力、重力、向心力、三者的聯(lián)系,通過引導(dǎo)學(xué)生對(duì)比結(jié)果,從中發(fā)現(xiàn)問題:萬(wàn)有引力與重力向心力的關(guān)系與區(qū)別,為下節(jié)知識(shí)的難點(diǎn)突破作好了鋪墊。
d.某物體沿直線向東運(yùn)動(dòng),原來的速度是5m/s,2s后速度減小到3m/s,求2s內(nèi)物體速度變化。④如何探究物體作勻速圓周運(yùn)動(dòng)時(shí),在Δt時(shí)間內(nèi)的速度變化?分析:有了同一直線上速度變化的鋪墊后,討論物體做勻速圓周運(yùn)動(dòng)速度的變化就比較自然了,為了給向心加速度方向的學(xué)習(xí)打好基礎(chǔ),可以通過小組協(xié)作,進(jìn)一步完成下列思考題,使同學(xué)們認(rèn)識(shí)到:時(shí)間間隔起短,速度變化的方向起接近半徑方向。(多媒體屏幕投影)a.物體沿半徑為1m的軌道做勻速圓周運(yùn)動(dòng),線速度大小為,求1s內(nèi)物體速度變化并畫出1s內(nèi)速度變化的示意圖。b.分別求出上題中物體在0.5s、0.25s內(nèi)速度變化并畫出相應(yīng)的示意圖。由于沒有辦法直接利用實(shí)驗(yàn)來驗(yàn)證速度變化的方向,所以,我們采用提供思考題的方法,引導(dǎo)同學(xué)在合作學(xué)習(xí)、自主探究中完成。有了速度變化的研究為鋪墊,加速度的方向問題就迎刃而解了。
[小結(jié)]師:下面同學(xué)們概括總結(jié)本節(jié)所學(xué)的內(nèi)容。請(qǐng)一個(gè)同學(xué)到黑板上總結(jié),其他同學(xué)在筆記本上總結(jié),然后請(qǐng)同學(xué)評(píng)價(jià)黑板上的小結(jié)內(nèi)容。 (學(xué)生認(rèn)真總結(jié)概括本節(jié)內(nèi)容,并把自己這節(jié)課的體會(huì)寫下來、比較黑板上的小結(jié)和自己的小結(jié),看誰(shuí)的更好,好在什么地方。) 生:本節(jié)課我們通過伽利略理想斜面實(shí)驗(yàn),分析得出了能量以及動(dòng)能和勢(shì)能的概念,從能量的相互轉(zhuǎn)化角度認(rèn)識(shí)到,在動(dòng)能和勢(shì)能的相互轉(zhuǎn)化過程中,能的總量保持不變,即能量是守恒的。通過這節(jié)課的學(xué)習(xí),使我們建立起了守恒的思想。 點(diǎn)評(píng):總結(jié)課堂內(nèi)容,培養(yǎng)學(xué)生概括總結(jié)能力。 教師要放開,讓學(xué)生自己總結(jié)所學(xué)內(nèi)容,允許內(nèi)容的順序不同,從而構(gòu)建他們自己的知識(shí)框架。[布置作業(yè)]課后討論 P3“問題與練習(xí)”中的問題。[課外訓(xùn)練]以豎直上拋的小球?yàn)槔f明小球的勢(shì)能和動(dòng)能的轉(zhuǎn)化情況。在這個(gè)例子中是否存在著能的總量保持不變?
了解了第一宇宙速度及其意義之后,繼續(xù)提出問題,讓學(xué)生思考:如果衛(wèi)星的發(fā)射速度大于第一宇宙速度7.9km/s ,會(huì)出現(xiàn)什么情況呢?先讓學(xué)生們大膽猜想,然后再向?qū)W生們介紹 衛(wèi)星發(fā)射速度大于第一宇宙速度后的幾種可能情況,引出第二宇宙速度和第三宇宙速度,讓學(xué)生對(duì)第二、第三宇宙速度及其意義做定性了解。并通過演示Flash課件,幫助學(xué)生理解、加深學(xué)生印象。在學(xué)生對(duì)人造衛(wèi)星的原理及發(fā)射衛(wèi)星的速度條件有了初步了解后,接下來引導(dǎo)學(xué)生對(duì)衛(wèi)星的運(yùn)動(dòng)規(guī)律作進(jìn)一步的探索。實(shí)際上衛(wèi)星并不是沿地表水平發(fā)射的,而是用火箭多次加速送到一定的高度的軌道后,再沿以地心為圓心的圓周的切線運(yùn)行的。讓學(xué)生繼續(xù)深入思考:衛(wèi)星在不同高度繞地球運(yùn)行時(shí)的速度怎么求呢?將衛(wèi)星送入低軌道和高軌道所需的速度都一樣么?如果把不同軌道上的衛(wèi)星繞地球的運(yùn)動(dòng)都看成是勻速圓周運(yùn)動(dòng),引導(dǎo)學(xué)生利用已學(xué)的萬(wàn)有引力和圓周運(yùn)動(dòng)的相關(guān)知識(shí),探究衛(wèi)星繞地球的運(yùn)行規(guī)律。
設(shè)計(jì)意圖:通過設(shè)疑、討論及學(xué)生的親身體驗(yàn)與教師的引導(dǎo),得到描述圓周運(yùn)動(dòng)快慢的兩個(gè)物理量,也就成功的打破了學(xué)生在認(rèn)識(shí)上的思維障礙,突破了物理概念教學(xué)的難點(diǎn)。在解決線速度和角速度的問題之后,我將引領(lǐng)學(xué)生學(xué)習(xí)勻速圓周運(yùn)動(dòng)的概念以及勻速圓周運(yùn)動(dòng)中線速度、角速度的特點(diǎn)。并引出勻速圓周運(yùn)動(dòng)中周期、轉(zhuǎn)速的知識(shí)。為了加深學(xué)生對(duì)線速度、角速度與半徑關(guān)系的認(rèn)識(shí),我設(shè)計(jì)了第三個(gè)學(xué)生體驗(yàn)活動(dòng):四名學(xué)生以我為圓心做圓周運(yùn)動(dòng),四名學(xué)生始終并列,這時(shí)里圈同學(xué)走動(dòng)不急不慢,而外圈同學(xué)則要小跑。通過學(xué)生的活動(dòng),不難發(fā)現(xiàn)在角速度相同的情況下,半徑越大的線速度也越大。定性的得到了線速度、角速度與半徑的關(guān)系。接下來讓學(xué)生利用所學(xué)知識(shí)推導(dǎo)線速度、角速度與半徑的關(guān)系。設(shè)計(jì)意圖:這樣就通過設(shè)疑、學(xué)生猜想、體驗(yàn)、推導(dǎo)的方式得到了結(jié)論,突破了本節(jié)課的難點(diǎn)即線速度、角速度與半徑的關(guān)系。
(四)、彈性勢(shì)能(據(jù)課時(shí)情況,可以讓學(xué)生自學(xué))生活中還有一些物體既沒有運(yùn)動(dòng)也沒有很大的高度卻同樣“儲(chǔ)存”著能量,哪怕它只是孩童手里的玩具(圖片:彈弓)。張緊的弓一撒手就會(huì)對(duì)箭支做功改變它的動(dòng)能,松弛的弓有這樣的本領(lǐng)嗎?同樣是弓前者具有能量而后者沒有,那么什么情況下物體才具有這種能量呢?張緊的弓在恢復(fù)原狀的過程會(huì)對(duì)外做功,但是拉斷的弓還能有做功的本領(lǐng)嗎?1.定義:物體由于發(fā)生彈性形變而具有的能量叫做彈性勢(shì)能。2.彈性勢(shì)能的大小與哪些因素有關(guān)呢?3、勢(shì)能由相互作用的物體的相對(duì)位置決定的能量。重力勢(shì)能:由地球和物體間相對(duì)位置決定。彈性勢(shì)能:由發(fā)生形變的各部分的相對(duì)位置決定。(五).反饋練習(xí)1. 物體在運(yùn)動(dòng)過程中,克服重力做功50J, 則( )A.重力做功為50JB.物體的重力勢(shì)能一定增加50JC.物體的重力勢(shì)能一定減少50JD.重力做功為-50J
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來度量成績(jī)的波動(dòng)幅度。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運(yùn)算一并集、交集、補(bǔ)集。是對(duì)集合基木知識(shí)的深入研究。在此,通過適當(dāng)?shù)膯栴}情境,使學(xué)生感受、認(rèn)識(shí)并掌握集合的三種基本運(yùn)算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對(duì)象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn)。A.理解兩個(gè)集合的并集與交集的含義,會(huì)求簡(jiǎn)單集合的交、并運(yùn)算;B.理解補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運(yùn)算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運(yùn)算:集合的運(yùn)算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運(yùn)算。
集合的基本運(yùn)算是人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,數(shù)學(xué)必修1第一章第三節(jié)的內(nèi)容. 在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對(duì)象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn).課程目標(biāo)1. 理解兩個(gè)集合的并集與交集的含義,能求兩個(gè)集合的并集與交集;2. 理解全集和補(bǔ)集的含義,能求給定集合的補(bǔ)集; 3. 能使用Venn圖表達(dá)集合的基本關(guān)系與基本運(yùn)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:并集、交集、全集、補(bǔ)集含義的理解;2.邏輯推理:并集、交集及補(bǔ)集的性質(zhì)的推導(dǎo);3.數(shù)學(xué)運(yùn)算:求 兩個(gè)集合的并集、交集及補(bǔ)集,已知并集、交集及補(bǔ)集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補(bǔ)集的性質(zhì)列不等式組,此過程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及?問題;
本節(jié)內(nèi)容來自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時(shí)的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要基礎(chǔ),是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語(yǔ)言來學(xué)習(xí),在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識(shí)和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合間的基本運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學(xué)習(xí),可以進(jìn)一步幫助學(xué)生利用集合語(yǔ)言進(jìn)行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。
四、小結(jié)1.知識(shí):如何采用兩角和或差的正余弦公式進(jìn)行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對(duì)三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識(shí),進(jìn)一步培養(yǎng)學(xué)生的建模意識(shí).五、作業(yè)1. 課時(shí)練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識(shí)要點(diǎn),及運(yùn)用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯(cuò)點(diǎn);
第一節(jié)通過研究集合中元素的特點(diǎn)研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點(diǎn)通過研究元素得到兩個(gè)集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個(gè)集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識(shí)別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會(huì)直觀圖示對(duì)理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運(yùn)算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對(duì)實(shí)際生活中的對(duì)象進(jìn)行判斷與歸類。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡(jiǎn)、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡(jiǎn)單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值以及證明,進(jìn)而進(jìn)行簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡(jiǎn); 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡(jiǎn)稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
問題導(dǎo)入:?jiǎn)栴}一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒有其他差異。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個(gè)95)影響較大,使平均數(shù)在估計(jì)總體時(shí)可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個(gè)小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識(shí)點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識(shí)點(diǎn),并能夠靈活運(yùn)用。