提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教A版高中數(shù)學(xué)必修一函數(shù)的零點(diǎn)與方程的解教學(xué)設(shè)計(jì)(1)

  • 高中數(shù)學(xué)函數(shù)的概念教師說(shuō)課稿

    高中數(shù)學(xué)函數(shù)的概念教師說(shuō)課稿

    一、 引入課題1. 復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;2. 閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:(1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;(3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題3. 引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;4. 根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

  • 人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    探究新知問(wèn)題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開(kāi)式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開(kāi)式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開(kāi)式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開(kāi)式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒(méi)有影響. ( )(3)Cknan-kbk是(a+b)n展開(kāi)式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開(kāi)式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開(kāi)式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開(kāi)式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計(jì)

    2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為_(kāi)_______. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為_(kāi)_______. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問(wèn)從這批產(chǎn)品中任取一件是次品的概率是多少?

  • 人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計(jì)

    (2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過(guò);若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過(guò),求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過(guò)”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計(jì)

    3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為

  • 人教版高中數(shù)學(xué)選修3成對(duì)數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3成對(duì)數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計(jì)

    由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來(lái)判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對(duì)值小,只是說(shuō)明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來(lái)檢驗(yàn)線性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷(xiāo)售額的10年數(shù)據(jù),如表所示.畫(huà)出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線性相關(guān),并通過(guò)樣本相關(guān)系數(shù)推斷居民年收入與A商品銷(xiāo)售額的相關(guān)程度和變化趨勢(shì)的異同.

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    1.對(duì)稱性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計(jì)

    對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問(wèn)題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過(guò)數(shù)字來(lái)反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類(lèi)似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問(wèn)題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過(guò)數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問(wèn)題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 用空間向量研究距離、夾角問(wèn)題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究距離、夾角問(wèn)題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問(wèn)題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問(wèn)題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 人教版高中數(shù)學(xué)選修3分類(lèi)變量與列聯(lián)表教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類(lèi)變量與列聯(lián)表教學(xué)設(shè)計(jì)

    一、 問(wèn)題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹(shù)的胸徑、樹(shù)的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時(shí)間等,都是數(shù)值變量,數(shù)值變量的取值為實(shí)數(shù).其大小和運(yùn)算都有實(shí)際含義.在現(xiàn)實(shí)生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問(wèn)題.例如,就讀不同學(xué)校是否對(duì)學(xué)生的成績(jī)有影響,不同班級(jí)學(xué)生用于體育鍛煉的時(shí)間是否有差別,吸煙是否會(huì)增加患肺癌的風(fēng)險(xiǎn),等等,本節(jié)將要學(xué)習(xí)的獨(dú)立性檢驗(yàn)方法為我們提供了解決這類(lèi)問(wèn)題的方案。在討論上述問(wèn)題時(shí),為了表述方便,我們經(jīng)常會(huì)使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類(lèi)隨機(jī)變量稱為分類(lèi)變量.分類(lèi)變量的取值可以用實(shí)數(shù)表示,例如,學(xué)生所在的班級(jí)可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時(shí)候,這些數(shù)值只作為編號(hào)使用,并沒(méi)有通常的大小和運(yùn)算意義,本節(jié)我們主要討論取值于{0,1}的分類(lèi)變量的關(guān)聯(lián)性問(wèn)題.

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(1)教學(xué)設(shè)計(jì)

    4.寫(xiě)出下列隨機(jī)變量可能取的值,并說(shuō)明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢(qián)數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.

  • 高中數(shù)學(xué)函數(shù)的奇偶性教師說(shuō)課稿

    高中數(shù)學(xué)函數(shù)的奇偶性教師說(shuō)課稿

    2.學(xué)情分析從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來(lái)思考和解決問(wèn)題.

  • 高中數(shù)學(xué)對(duì)數(shù)函數(shù)教師說(shuō)課稿

    高中數(shù)學(xué)對(duì)數(shù)函數(shù)教師說(shuō)課稿

    一、 教學(xué)目標(biāo)根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:學(xué)習(xí)目標(biāo):1、復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)的圖像及性質(zhì)2、運(yùn)用對(duì)數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小能力目標(biāo):1、 培養(yǎng)學(xué)生運(yùn)用圖形解決問(wèn)題的意識(shí)即數(shù)形結(jié)合能力2、學(xué)生運(yùn)用已學(xué)知識(shí),已有經(jīng)驗(yàn)解決新問(wèn)題的能力3、 探索出方法,有條理闡述自己觀點(diǎn)的能力

上一頁(yè)12345678910111213下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!