提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中政治必修3第七課我們的民族精神精品教案

  • 人教A版高中數(shù)學(xué)必修一同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡(jiǎn)三角函數(shù)式、證明三角恒等式的基本工具,是整個(gè)三角函數(shù)知識(shí)的基礎(chǔ),在教材中起承上啟下的作用。同時(shí),它體現(xiàn)的數(shù)學(xué)思想與方法在整個(gè)中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運(yùn)算:利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明重點(diǎn):理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點(diǎn):會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.

  • 人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過(guò)圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    由于三角函數(shù)是刻畫(huà)周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類(lèi)型函數(shù)的最重要的地方,而且對(duì)于周期函數(shù),我們只要認(rèn)識(shí)清楚它在一個(gè)周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來(lái)作圖,從畫(huà)出的圖形中觀察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫(huà)正弦函數(shù)、余弦函數(shù)的簡(jiǎn)圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫(huà)正弦曲線(xiàn)和余弦曲線(xiàn)的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正弦、余弦曲線(xiàn).2.理解正弦曲線(xiàn)與余弦曲線(xiàn)之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線(xiàn)與余弦曲線(xiàn)的概念; 2.邏輯推理:正弦曲線(xiàn)與余弦曲線(xiàn)的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過(guò)正弦、余弦圖象圖像,解決不等式問(wèn)題及零點(diǎn)問(wèn)題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線(xiàn)、余弦曲線(xiàn)這兩種曲線(xiàn)的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會(huì)利用周期性定義和誘導(dǎo)公式求簡(jiǎn)單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡(jiǎn)單問(wèn)題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過(guò)正弦曲線(xiàn)、余弦曲線(xiàn)這兩種曲線(xiàn)探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來(lái)求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對(duì)稱(chēng)性.

  • 人教A版高中數(shù)學(xué)必修一指數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一指數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)冪函數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納指數(shù)函數(shù)的概念,通過(guò)函數(shù)的三個(gè)特征解決一些與函數(shù)概念有關(guān)的問(wèn)題.課程目標(biāo)1、通過(guò)實(shí)際問(wèn)題了解指數(shù)函數(shù)的實(shí)際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的思想總結(jié)指數(shù)函數(shù)概念.重點(diǎn):理解指數(shù)函數(shù)的概念和意義;難點(diǎn):理解指數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入在本章的開(kāi)頭,問(wèn)題(1)中時(shí)間 與GDP值中的 ,請(qǐng)問(wèn)這兩個(gè)函數(shù)有什么共同特征.要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.

  • 人教A版高中數(shù)學(xué)必修二事件的相互獨(dú)立性教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二事件的相互獨(dú)立性教學(xué)設(shè)計(jì)

    問(wèn)題導(dǎo)入:?jiǎn)栴}一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問(wèn)題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問(wèn)題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒(méi)有其他差異。

  • 人教A版高中數(shù)學(xué)必修二圓柱、圓錐、圓臺(tái)和球的表面積與體積教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二圓柱、圓錐、圓臺(tái)和球的表面積與體積教學(xué)設(shè)計(jì)

    1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開(kāi)圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來(lái)解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開(kāi)圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過(guò)實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.

  • 人教A版高中數(shù)學(xué)必修二向量的減法運(yùn)算教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二向量的減法運(yùn)算教學(xué)設(shè)計(jì)

    新知探究:向量的減法運(yùn)算定義問(wèn)題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來(lái)進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問(wèn)題六:根據(jù)問(wèn)題五,思考一下向量減法的幾何意義是什么?問(wèn)題七:非零共線(xiàn)向量怎樣做減法運(yùn)算? 問(wèn)題八:非零共線(xiàn)向量怎樣做減法運(yùn)算?1.共線(xiàn)同向2.共線(xiàn)反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線(xiàn)向量。 ( √ )

  • 第七周?chē)?guó)旗下講話(huà)稿:請(qǐng)以耐心愛(ài)上這三年

    第七周?chē)?guó)旗下講話(huà)稿:請(qǐng)以耐心愛(ài)上這三年

    老師們同學(xué)們大家早上好,我是來(lái)自高三七班的胡祎珩。今天我演講的題目是“請(qǐng)以耐性愛(ài)上這單調(diào)的三年”。你是否感到深陷囹圄,被幽囚在這方寸土,這個(gè)時(shí)間。你以為所謂的青春,只是在想撕碎四四方方的白卷,在想抹去手中永不停歇的筆所落下的墨點(diǎn)中掙扎,卻又無(wú)計(jì)可施。所以你感到乏味。也許,只是因?yàn)槟悴⑽磹?ài)上。愛(ài)上這些單調(diào)冗雜的日子。和大家分享《約翰·克里斯朵夫》中的一段話(huà):“你得對(duì)著新來(lái)的日子抱著虔誠(chéng)的心……對(duì)每一天都得抱著虔誠(chéng)的態(tài)度。得愛(ài)它,尊敬它,尤其不能侮辱它,妨害它的發(fā)榮滋長(zhǎng)。便是像今天這樣灰暗愁?lèi)灥娜兆?,你也得?ài)……現(xiàn)在是冬天,一切都睡著了。將來(lái)大地會(huì)醒過(guò)來(lái)的,你只要跟大地一樣,像它那樣有耐性就是了?!闭鐣?shū)中所說(shuō),愛(ài)上這些仿佛無(wú)限循環(huán)的日子,要有耐性。打開(kāi)搜索引擎搜索這兩字,得到的心理學(xué)釋義是:堅(jiān)持,自制力,積極的態(tài)度等。就這三點(diǎn),向大家提出以下三點(diǎn)建議:一,堅(jiān)持。千里大堤一沙一石的積累,才能有前不見(jiàn)頭,后不見(jiàn)尾的壯麗;慈悲我佛一天一日的修善,才能有普渡眾生,大愛(ài)天下的情懷。量變引起質(zhì)變,你必須明白,時(shí)間的積累,重復(fù)的循環(huán),是多么重要。

  • 雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線(xiàn)型冷卻塔的外形,是雙曲線(xiàn)的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線(xiàn)的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線(xiàn)方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線(xiàn)方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線(xiàn)l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線(xiàn) 的右焦點(diǎn)F2,傾斜角為30度的直線(xiàn)交雙曲線(xiàn)于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線(xiàn)的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€(xiàn)AB的傾斜角是30°,且直線(xiàn)經(jīng)過(guò)右焦點(diǎn)F2,所以,直線(xiàn)AB的方程為

  • 用空間向量研究直線(xiàn)、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線(xiàn)、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線(xiàn)和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱(chēng)為點(diǎn)P的位置向量.如圖.2.空間直線(xiàn)的向量表示式如圖①,a是直線(xiàn)l的方向向量,在直線(xiàn)l上取(AB) ?=a,設(shè)P是直線(xiàn)l上的任意一點(diǎn),則點(diǎn)P在直線(xiàn)l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線(xiàn)l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱(chēng)為空間直線(xiàn)的向量表示式.由此可知,空間任意直線(xiàn)由直線(xiàn)上一點(diǎn)及直線(xiàn)的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線(xiàn)的方向向量是唯一的B.與一個(gè)平面的法向量共線(xiàn)的非零向量都是該平面的法向量C.直線(xiàn)的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問(wèn)題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過(guò)數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問(wèn)題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱(chēng)為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問(wèn)題導(dǎo)學(xué)類(lèi)比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線(xiàn)x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線(xiàn)的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線(xiàn)上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱(chēng)性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱(chēng)。x軸、y軸是雙曲線(xiàn)的對(duì)稱(chēng)軸,原點(diǎn)是對(duì)稱(chēng)中心,又叫做雙曲線(xiàn)的中心。3、頂點(diǎn)(1)雙曲線(xiàn)與對(duì)稱(chēng)軸的交點(diǎn),叫做雙曲線(xiàn)的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線(xiàn)段A_1 A_2 叫做雙曲線(xiàn)的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線(xiàn)段B_1 B_2 叫做雙曲線(xiàn)的虛軸,它的長(zhǎng)為2b,b叫做雙曲線(xiàn)的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線(xiàn)叫等軸雙曲線(xiàn)4、漸近線(xiàn)(1)雙曲線(xiàn)x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線(xiàn)方程為:y=±b/a x(2)利用漸近線(xiàn)可以較準(zhǔn)確的畫(huà)出雙曲線(xiàn)的草圖

  • 拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問(wèn)題導(dǎo)學(xué)類(lèi)比用方程研究橢圓雙曲線(xiàn)幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線(xiàn)的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線(xiàn) y2 = 2px (p>0) 在 y 軸的右側(cè),開(kāi)口向右,這條拋物線(xiàn)上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿(mǎn)足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線(xiàn)向右上方和右下方無(wú)限延伸.拋物線(xiàn)是無(wú)界曲線(xiàn).2. 對(duì)稱(chēng)性觀察圖象,不難發(fā)現(xiàn),拋物線(xiàn) y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱(chēng),我們把拋物線(xiàn)的對(duì)稱(chēng)軸叫做拋物線(xiàn)的軸.拋物線(xiàn)只有一條對(duì)稱(chēng)軸. 3. 頂點(diǎn)拋物線(xiàn)和它軸的交點(diǎn)叫做拋物線(xiàn)的頂點(diǎn).拋物線(xiàn)的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線(xiàn)上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線(xiàn)的距離的比,叫做拋物線(xiàn)的離心率. 用 e 表示,e = 1.探究如果拋物線(xiàn)的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線(xiàn)與拋物線(xiàn)的位置關(guān)系設(shè)直線(xiàn)l:y=kx+m,拋物線(xiàn):y2=2px(p>0),將直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線(xiàn)與拋物線(xiàn)相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線(xiàn)與拋物線(xiàn)相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線(xiàn)與拋物線(xiàn)相離,沒(méi)有公共點(diǎn).(2)若k=0,直線(xiàn)與拋物線(xiàn)有一個(gè)交點(diǎn),此時(shí)直線(xiàn)平行于拋物線(xiàn)的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線(xiàn)與拋物線(xiàn)有一個(gè)公共點(diǎn)是直線(xiàn)與拋物線(xiàn)相切的必要不充分條件.二、典例解析例5.過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線(xiàn)頂點(diǎn)的直線(xiàn)交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn)D,求證:直線(xiàn)DB平行于拋物線(xiàn)的對(duì)稱(chēng)軸.【分析】設(shè)拋物線(xiàn)的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線(xiàn)OA的方程為: = = ,可得yD= .設(shè)直線(xiàn)AB的方程為:my=x﹣ ,與拋物線(xiàn)的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫(xiě)出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱(chēng)性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱(chēng);③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱(chēng)軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱(chēng)軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線(xiàn),經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究直線(xiàn)、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線(xiàn)、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線(xiàn)分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線(xiàn)向量都垂直,從而根據(jù)線(xiàn)面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線(xiàn)向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線(xiàn),從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線(xiàn),因此D1M⊥平面EFB1.

  • 《以工匠精神雕琢?xí)r代品質(zhì)》說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)

    《以工匠精神雕琢?xí)r代品質(zhì)》說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)

    答案:銅車(chē)馬的輝煌,來(lái)自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢??梢哉f(shuō),是精益求精的工匠精神鍛造出了“青銅之冠”的銅車(chē)馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實(shí)意義?觀點(diǎn)一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個(gè)方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動(dòng)力。第三,執(zhí)著是企業(yè)走得長(zhǎng)久的底氣。改革開(kāi)放40 多年來(lái),我國(guó)涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂(yōu)所在。觀點(diǎn)二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢(qián)養(yǎng)家糊口的工具,而是樹(shù)立起對(duì)職業(yè)敬畏、對(duì)工作執(zhí)著、對(duì)產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶(hù)無(wú)可挑剔的體驗(yàn)。我國(guó)制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。

  • 國(guó)旗下講話(huà):《讓書(shū)香伴我們同行》

    國(guó)旗下講話(huà):《讓書(shū)香伴我們同行》

    人生之光澤與真諦,倘若沒(méi)有一顆善感的心,便會(huì)與我們的生活失之交臂,我們的生命便會(huì)黯淡無(wú)光。而淡淡書(shū)香正是那打開(kāi)我們心靈枷鎖的鑰匙,清理我們被塵世蒙塵的心靈,細(xì)細(xì)地,每時(shí)每刻品那人生的滋味。讀書(shū)對(duì)很多人來(lái)說(shuō)是任務(wù),是工作,但更是一種樂(lè)趣,是一種享受。我們讀天地,讀自然,讀歷史,讀人文……似乎什么東西都可以哪來(lái)讀,但不管讀的是什么,最終我們讀的是感情,是思想,更是人。讀一本好書(shū),就像交了一個(gè)益友。書(shū)中必有同好者,以書(shū)會(huì)友,以友輔心,書(shū)中遇知音,書(shū)中遇知心。古往今來(lái),關(guān)于讀書(shū)的箴言是不計(jì)其數(shù)。古有顏真卿的“ 黑發(fā)不知勤學(xué)早,白首方悔讀書(shū)遲”,陸游的“書(shū)到用時(shí)方恨少、事非經(jīng)過(guò)不知難”,李若蟬的“鳥(niǎo)欲高飛先振翅,人求上進(jìn)先讀書(shū)”,也有蘇東坡的“好書(shū)不厭讀百回,熟讀課思子自知”。后有愛(ài)迪生的“書(shū)籍是偉大的天才留給人類(lèi)的遺產(chǎn)”,普希金的“人的影響短暫而微弱,書(shū)的影響則廣泛而深遠(yuǎn)”,還有列夫托爾斯泰的“理想的書(shū)籍是智慧的鑰匙”。我以為,讀書(shū)的好處有三,陶冶性情,精神追求和啟蒙自我。

上一頁(yè)123...545556575859606162636465下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!