提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

大班數(shù)學教案:統(tǒng)計我的好伙伴

  • 兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教A版高中數(shù)學必修一集合間的基本關(guān)系教學設計(1)

    人教A版高中數(shù)學必修一集合間的基本關(guān)系教學設計(1)

    本節(jié)內(nèi)容來自人教版高中數(shù)學必修一第一章第一節(jié)集合第二課時的內(nèi)容。集合論是現(xiàn)代數(shù)學的一個重要基礎(chǔ),是一個具有獨特地位的數(shù)學分支。高中數(shù)學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識和必備工具。本小節(jié)內(nèi)容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進一步學習集合與集合之間的關(guān)系,同時也是下一節(jié)學習集合間的基本運算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結(jié)的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數(shù)學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數(shù)形結(jié)合思想。

  • 人教版新課標小學數(shù)學三年級上冊時間的計算說課稿

    人教版新課標小學數(shù)學三年級上冊時間的計算說課稿

    【反思】本節(jié)課的教學注重體現(xiàn)了情境教學在教學中的運用。課堂上體現(xiàn)了這樣幾個特點:1.數(shù)學知識與生活實際相結(jié)合。數(shù)學來源于生活,生活中處處有數(shù)學。小學生對熟悉的生活情境和事物感興趣。所以我從他們熟悉的事物中尋找教學題材,設計了有趣的情景教學。讓學生感到數(shù)學知識就在他們身邊,感到數(shù)學的作用,設計了作息時間表。這樣,既鞏固了時間的知識。又可以教育學生在生活中要合理安排時間,不要浪費時間,做時間的主人。2.注重在學習中自主探究,合作交流。在教學《時間的計算》時,讓學生用自己制作的學具表親自動手撥一撥,想一想讓他們主動嘗試自主發(fā)展。教學例2時讓他們小組合作交流學習方法。這些都體現(xiàn)了培養(yǎng)學生的能力.自主探究的精神。

  • 小學數(shù)學人教版四年級上冊《計算工具的認識》說課稿

    小學數(shù)學人教版四年級上冊《計算工具的認識》說課稿

    一、教學內(nèi)容:人教版小學數(shù)學四年級上冊第23~25頁全部內(nèi)容二、編寫意圖:“計算工具的認識”分別介紹了計算工具算盤和計算器,還安排了有關(guān)計具的發(fā)展歷史和現(xiàn)狀的閱讀材料。教材安排了較多的直觀圖戰(zhàn)士了算盤和計算器的實際應用、算盤和計算器的結(jié)構(gòu),比較形象直觀,讓學生在觀察和活動中認識常用的計算工具。三、教學目標:鑒于以上分析,我把本課的教學目標定位為以下三個方面:1.讓生初步認識計算器,了解計算器的基本功能,會使用計算器進行大數(shù)目的計算,通過計算探索發(fā)現(xiàn)一些簡單的數(shù)學規(guī)律,解決一些簡單的實際問題。2.通過對計算器的運用,體驗用計算器進行計算的優(yōu)點,進一步培養(yǎng)對數(shù)學學習的興趣,感受用計算器計算在人類生活和工作中的價值。3.在自主探究的學習過程中培養(yǎng)學生的問題意識和創(chuàng)新意識,在解決實際問題中,滲透節(jié)約、環(huán)保等方面意識,使學生受到思想教育。

  • 人教版新課標小學數(shù)學一年級下冊人民幣的簡單計算 說課稿3篇

    人教版新課標小學數(shù)學一年級下冊人民幣的簡單計算 說課稿3篇

    教學重難點:學會人民幣單位間的換算和簡單的加減法計算以及學會看物品價格的表示形式第三部分 設計意圖1. 通過購物情景的創(chuàng)設,使課堂富有真實的生活氣息。2. 為學生搭建知識的攀升階梯,讓學生經(jīng)歷數(shù)學知識的發(fā)展形成過程。3. 將所學知識應用現(xiàn)實生活中,解決實際問題。第四部分 教學過程一、創(chuàng)設情境,激趣導入。1.孩子們你們喜歡交朋友嗎?(喜歡)在班級里誰是你的好朋友呀?(學生回答)你們喜歡我嗎?我也想和你們做朋友。今天我還給同學們帶來了一個新朋友?你們看它是誰?電腦出示米老鼠你們想和它做朋友嗎?想和它做朋友上課就得好好表現(xiàn),他們才愿意做你們的朋友.誰說一下,上課怎樣做才是好好表現(xiàn)呢?(要專心聽見,勇敢發(fā)言,)老師看看勇敢的你在哪里?

  • 人教版新課標小學數(shù)學四年級上冊計算工具的認識說課稿

    人教版新課標小學數(shù)學四年級上冊計算工具的認識說課稿

    二、編寫意圖:“計算工具的認識”分別介紹了計算工具算盤和計算器,還安排了有關(guān)計算工具的發(fā)展歷史和現(xiàn)狀的閱讀材料。教材安排了較多的直觀圖戰(zhàn)士了算盤和計算器的實際應用、算盤和計算器的結(jié)構(gòu),比較形象直觀,讓學生在觀察和活動中認識常用的計算工具。三、教學目標:鑒于以上分析,我把本課的教學目標定位為以下三個方面:1、讓生初步認識計算器,了解計算器的基本功能,會使用計算器進行大數(shù)目的計算,通過計算探索發(fā)現(xiàn)一些簡單的數(shù)學規(guī)律,解決一些簡單的實際問題。2、通過對計算器的運用,體驗用計算器進行計算的優(yōu)點,進一步培養(yǎng)對數(shù)學學習的興趣,感受用計算器計算在人類生活和工作中的價值。3、在自主探究的學習過程中培養(yǎng)學生的問題意識和創(chuàng)新意識,在解決實際問題中,滲透節(jié)約、環(huán)保等方面意識,使學生受到思想教育。

  • 人教版新課標小學數(shù)學四年級上冊計算工具的認識與使用說課稿

    人教版新課標小學數(shù)學四年級上冊計算工具的認識與使用說課稿

    讓學生再用計算器計算,然后讓學生談談遇到的問題(計算器已經(jīng)不能把這些數(shù)顯示出來了)。最后讓學生根據(jù)上面的計算結(jié)果,找出規(guī)律,再直接寫出后四題的得數(shù),并組織學生交流,要求學生說說自己的思考過程及依據(jù),確認發(fā)現(xiàn)的規(guī)律,讓學生進一步體會計算器的作用:計算器還可以幫助我們探索規(guī)律。(設計意圖:設計不同層次的練習,使學生體驗計算器的有用性,提高學生解決問題的能力,培養(yǎng)學生辨證思維能力)四、最后進行全課總結(jié)。整個活動,老師創(chuàng)設情境,啟發(fā)誘導,設疑激趣,學生自主探索,動手操作,積極思考,討論交流,給學生提供了充分的數(shù)學活動機會,充分發(fā)揮了學生的主體作用,使學生不僅掌握了知識,發(fā)展了能力,同時又體驗了數(shù)學問題的探索性與創(chuàng)造性,以及成功的喜悅,學生學得輕松,學得主動,學有創(chuàng)造,學有發(fā)展

  • 人教版新課標小學數(shù)學四年級下冊乘除法的簡便計算說課稿

    人教版新課標小學數(shù)學四年級下冊乘除法的簡便計算說課稿

    一、說教材:《簡便計算》 這一課是人民教育出版社第八冊數(shù)學第三單元P44的內(nèi)容。是在學生已經(jīng)掌握了乘法的意義并且對乘法交換律、結(jié)合律、分配律以及除法的定律有了初步認識的基礎(chǔ)上進行教學的。本節(jié)課力求突出以學生發(fā)展為本的教育思想,所以整個教學過程要求以學生自主學習、自主探索為主,通過學生的觀察、歸納、運用等數(shù)學學習形式,讓學生去感受數(shù)學問題的探索性和挑戰(zhàn)性。學生在認知的過程中熟練地應用乘法結(jié)合律和連除的簡便計算等一些定律并把前面一節(jié)課所學知識與今天的內(nèi)容聯(lián)系起來,從而更好地進行簡便計算,達到靈活運用的目的與效果。二、說教法:根據(jù)本節(jié)課的教材內(nèi)容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,采用自學討論法進行教學。師生作適當歸納或總結(jié)性的講解;最后進行鞏固練習。通過這種教法,引導學生充分提出問題并充分討論問題,充分體現(xiàn)學生的主體性,教師只是學生學習的指導者、活動的組織者。

  • 人教版新課標小學數(shù)學四年級下冊加減法的簡便計算說課稿2篇

    人教版新課標小學數(shù)學四年級下冊加減法的簡便計算說課稿2篇

    一、說教材:本節(jié)課是在理解和掌握了五條運算定律的基礎(chǔ)上進一步學習整數(shù)運算中的一些簡便計算。這部分內(nèi)容主要安排了五道例題。我主要教學的是例1和例2,討論加減法運算中常用的簡便計算。例1主要著眼于通過不同解法的比較,使學生認識一個數(shù)連續(xù)減去兩個數(shù)可以改為減去這兩個數(shù)的和。例2主要是加減計算的靈活應用,通過典型的、緊密聯(lián)系生活,引導學生根據(jù)運算特點和數(shù)據(jù)特點,靈活選用合理簡便的計算方法。本節(jié)教材最大的特點是:將簡便計算的討論與實際問題的解決有機地結(jié)合起來,使問題解決策略的多樣化與計算方法的多樣化融為一體。根據(jù)這一特點,我制定本節(jié)課的教學目標有以下幾點:1、讓學生在解決問題中理解連減的簡便計算方法,體驗計算方法的多樣化。2、使學生感受數(shù)學與現(xiàn)實生活中的聯(lián)系,培養(yǎng)學生根據(jù)具體情況選擇算法的意識與能力,發(fā)展思維性。

  • 人教版新課標小學數(shù)學五年級上冊三角形面積的計算說課稿2篇

    人教版新課標小學數(shù)學五年級上冊三角形面積的計算說課稿2篇

    如通過數(shù)方格的方法求出三角形面積,讓學生用兩個三角形拼擺。一方面啟發(fā)學生設法把研究的圖形轉(zhuǎn)化為已經(jīng)會計算面積的圖形,另一方面主動探索所研究的圖形與已學的預先之間有什么樣的聯(lián)系,從而找出面積的計算方法,而不是把計算公式直接告訴學生。這樣,既使學生在理解的基礎(chǔ)上掌握三角形面積計算公式,印象深刻,又培養(yǎng)了學生的思維能力,動手操作能力,發(fā)展了空間觀念。5、教材重點、難點和關(guān)鍵本節(jié)教學內(nèi)容的重點是掌握三角形面積的計算公式;難點是理解三角形面積公式的推導過程;關(guān)鍵是通過操作實驗,使學生明確每個三角形的面積是等底等高的平行四邊形面積一半。在教學過程中注意以下幾點,重點難點問題就迎刃而解。⑴ 加強學生動手操作,通過三次對兩個完全相同的直角三角形、銳角三角形、鈍角三角形的拼擺,引導學生弄清三角形面積與平行四邊形面積關(guān)系,啟發(fā)學生探索三角形面積的計算方法。

  • 人教版新課標小學數(shù)學五年級上冊梯形面積的計算說課稿2篇

    人教版新課標小學數(shù)學五年級上冊梯形面積的計算說課稿2篇

    8、應用公式,嘗試計算梯形面積(出示一個基本圖形讓學生計算)〈這一環(huán)節(jié)意在讓學生主動參與到數(shù)學活動中,親自去體驗,讓學生運用自己已有的知識,大膽提出假想,共同探討,互相驗證,更強烈地激發(fā)學生探究學習的興趣,更全面、更方便地揭示新舊知識之間的聯(lián)系。這種讓學生在活動中發(fā)現(xiàn)、活動中體驗、活動中發(fā)散、活動中發(fā)展的過程,真真正正地體現(xiàn)了以人的發(fā)展為本的教育理念。〉(三)、深化鞏固1、學習例1(1)、借助教具演示,理解“橫截面”的含義。(2)、弄清渠口、渠底、渠深各是梯形的什么?(3)、學生嘗試計算橫截面積?!挫柟绦轮钦n堂教學中不可缺少的一個過程,這一環(huán)節(jié)是為了將學生的學習積極性再次推向高潮,能更好地運用公式計算梯形面積,從中培養(yǎng)了學生解決簡單實際問題的能力?!?/p>

上一頁123...104105106107108109110111112113114115下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!