提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中語文必修1《優(yōu)美的漢字》教案2篇

  • 人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用說課稿

    人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用說課稿

    通過列表對比法、歸納法、、多媒體輔助法等教學(xué)方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學(xué)生更是學(xué)會運用圖表方法、高效記憶法、合作學(xué)習(xí)法等方法學(xué)習(xí)地理知識,增加學(xué)習(xí)能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實際身旁的社會生產(chǎn)生活,到地理學(xué)的區(qū)域地理環(huán)境研究。學(xué)生的年齡和認(rèn)知范圍決定,此部分的案例教學(xué)的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術(shù)特點和具體應(yīng)用。而后者涉及地理學(xué)科的綜合性和區(qū)域性的特點,難度較大。針對學(xué)情特點,我多以前者案例入手學(xué)習(xí),以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用

  • 人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(一)

    人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(一)

    (二)說學(xué)法指導(dǎo)把“學(xué)習(xí)的主動權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機會,充分利用學(xué)生已獲得的生活體驗,通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識,從而增強教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會本節(jié)課的重點難點。(三)說教學(xué)手段:我運用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場景,營造一個形象生動的課堂氣氛。三、說教學(xué)過程教學(xué)過程堅持"情境探究法",分為"導(dǎo)入新課——推進新課——走進生活"三個層次,環(huán)環(huán)相扣,逐步推進,幫助學(xué)生完成由感性認(rèn)識到理性認(rèn)識的飛躍。下面我重點簡述一下對教學(xué)過程的設(shè)計。

  • 人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(二)

    人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(二)

    一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學(xué)好這部分的知識對于學(xué)生進一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識的關(guān)系,分析辯證否定的實質(zhì)是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關(guān)。

  • 人教版高中地理必修3森林的開發(fā)和保護—以亞馬孫熱帶雨林為例說課稿

    人教版高中地理必修3森林的開發(fā)和保護—以亞馬孫熱帶雨林為例說課稿

    【這部分的設(shè)計目的,要學(xué)生明白熱帶雨林只是一個案例,我們的目的是要合理開發(fā)和保護全世界的森林。由森林的開發(fā)與保護來明確區(qū)域發(fā)展過程中產(chǎn)生的環(huán)境問題,危害及治理保護措施?!咳缓笾R遷移——東北林區(qū)的開發(fā)與保護介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補給土壤有機質(zhì)、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點撥:由于人類的嚴(yán)重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災(zāi),東北林區(qū)的面積在銳減,帶來了嚴(yán)重的生態(tài)惡化。我們該如何開發(fā)和保護東北地區(qū)的森林呢?

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(1)

    本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧

  • 人教A版高中數(shù)學(xué)必修一函數(shù)y=Asin(ωχ+φ)教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)y=Asin(ωχ+φ)教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會到由簡單到復(fù)雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學(xué)生學(xué)會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。

  • 人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(2)

    等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng),有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運算:比較多項式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。

  • 人教A版高中數(shù)學(xué)必修一全稱量詞與存在量詞教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一全稱量詞與存在量詞教學(xué)設(shè)計(2)

    (4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標(biāo)為(0,5/3).

  • 空間向量基本定理教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量基本定理教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

  • 高中歷史人教版必修一《第22課祖國統(tǒng)一大業(yè)(簡案)》說課稿

    高中歷史人教版必修一《第22課祖國統(tǒng)一大業(yè)(簡案)》說課稿

    情景導(dǎo)入:......運用情景營造氣氛,激發(fā)學(xué)生的求知欲望,幫助學(xué)生聯(lián)系現(xiàn)實問題,學(xué)習(xí)歷史,拉近歷史與現(xiàn)實的距離,引導(dǎo)學(xué)生關(guān)注時政熱點,關(guān)心國家大事。自主學(xué)習(xí):組織學(xué)生閱讀課文,老師參與學(xué)生閱讀活動并板書知識結(jié)構(gòu)。通過學(xué)生自主學(xué)習(xí),培養(yǎng)學(xué)生自學(xué)能力,為進一步好好學(xué)習(xí)打下基礎(chǔ)。交流學(xué)習(xí):學(xué)生自學(xué)以后,老師引導(dǎo)學(xué)生相互交流自學(xué)成果,學(xué)生自主提出問題,相互解答,從而達(dá)到生生互動、師生互動,在互動中學(xué)習(xí),共同提高

  • 高中歷史人教版必修一《第22課祖國統(tǒng)一大業(yè)》說課稿

    高中歷史人教版必修一《第22課祖國統(tǒng)一大業(yè)》說課稿

    1、教材分析 本課選自普通高中課程標(biāo)準(zhǔn)實驗教材,人民教育出版社歷史必修(1),第六單元:現(xiàn)代中國的政治建設(shè)與祖國統(tǒng)一,第22課——祖國統(tǒng)一大業(yè)。祖國統(tǒng)一始終是中國人民的共同夙愿。本課內(nèi)容主要敘述了“一國兩制”的偉大構(gòu)想,為完成祖國統(tǒng)一大業(yè)提出了一個創(chuàng)造性的指導(dǎo)方針。香港、澳門的回歸,是“一國兩制” 偉大構(gòu)想的成功實踐。在“一國兩制”方針指導(dǎo)下,海峽兩岸實現(xiàn)了一次歷史性的突破。揭示了“一國兩制” 的構(gòu)想,對推動完成祖國完全統(tǒng)一大業(yè),實現(xiàn)中華民族偉大復(fù)興具有現(xiàn)實指導(dǎo)意義。 2、學(xué)情分析通過調(diào)查知道,學(xué)生對本節(jié)的基本史實有一定了解。但是,高一新生習(xí)慣于知識的記憶和教師的講解,不能深入分析歷史現(xiàn)象的內(nèi)涵和外延;不能進一步探究事物的因果關(guān)系和理解事物的本質(zhì);并且需要進一步拓展思維的廣度和深度,實現(xiàn)從一維目標(biāo)到三維目標(biāo)的飛躍。

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運用;

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.

  • 空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 人教版高中地理必修3區(qū)域工業(yè)化與城市化—以我國珠江三角洲地區(qū)為例說課稿

    人教版高中地理必修3區(qū)域工業(yè)化與城市化—以我國珠江三角洲地區(qū)為例說課稿

    A.城鎮(zhèn)數(shù)量猛增B.城市規(guī)模不斷擴大【設(shè)計意圖】通過讀圖的對比分析,提高學(xué)生提取信息以及對比分析問題的能力,通過小組之間的討論,培養(yǎng)合作能力。五、課堂小結(jié)和布置作業(yè)關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié),你這節(jié)課學(xué)到了什么。這樣既可以提高學(xué)生的總結(jié)概括能力,也可以讓我在第一時間內(nèi)獲得它們的學(xué)習(xí)反饋。(本節(jié)課主要學(xué)習(xí)了珠三角的位置和范圍以及改革開放以來珠三角地區(qū)工業(yè)化和城市化的發(fā)展。)關(guān)于作業(yè)的布置,我打算采用分層次布置作業(yè)法。第一個層次的作業(yè)是基礎(chǔ)作業(yè),要求每一位同學(xué)都掌握,第二個層次的作業(yè)是彈性作業(yè),學(xué)生可以根據(jù)自己的情況來選做。整個這堂課,老師只是作為一個引導(dǎo)者、組織者的角色,學(xué)生才是課堂上真正的主人,是自我意義的建構(gòu)者和知識的生成者,被動的、復(fù)制式的課堂將離我們遠(yuǎn)去。

  • 人教版高中地理必修3區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展—以我國東北地區(qū)為例說課稿

    人教版高中地理必修3區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展—以我國東北地區(qū)為例說課稿

    (3)師生討論,提升思維深度。教師引領(lǐng)學(xué)生將討論由農(nóng)業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農(nóng)業(yè)結(jié)構(gòu)不合理、農(nóng)業(yè)技術(shù)落后等深層問題,提升了學(xué)生思維的深度。(4)角色體驗,突破難點落實重點。在農(nóng)民與保護區(qū)工作人員的角色體驗活動中,學(xué)生們嘗試換位思考,在沖突與交鋒中,在教師的引領(lǐng)下,重新認(rèn)識環(huán)境保護與區(qū)域經(jīng)濟發(fā)展的關(guān)系,在情感體驗中加深對可持續(xù)發(fā)展內(nèi)涵的理解,小沖突凸顯大矛盾是本課設(shè)計的創(chuàng)新之處。2.注重對地理問題的探究,突出地理學(xué)科本質(zhì)。地理學(xué)科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學(xué)中應(yīng)該把握的基本特征,也是我們應(yīng)當(dāng)把握的地理學(xué)科的本質(zhì)特征,因此在本節(jié)課的設(shè)計中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學(xué)科的本質(zhì)。

  • 人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?

上一頁123...515253545556575859606162下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。