一、調(diào)研的工作目標(biāo) 通過調(diào)研,了解我學(xué)區(qū)小學(xué)段教育教學(xué)的基本情況,總結(jié)被調(diào)研學(xué)校的教育教學(xué)質(zhì)量提升的經(jīng)驗(yàn)、方法,查找教育教學(xué)過程中存在的問題,尋求破解我學(xué)區(qū)小學(xué)段教育教學(xué)質(zhì)量提升瓶頸的方法和策略,改進(jìn)學(xué)校管理措施,促進(jìn)教育教學(xué)常規(guī)管理科學(xué)化、規(guī)范化、精細(xì)化,全面提升我校教育教學(xué)質(zhì)量。 二、調(diào)研的基本情況 1. 選取樣本學(xué)校?! ”敬握{(diào)研,為了使樣本校抽樣具有代表性,結(jié)合我校的現(xiàn)狀,調(diào)研工作在我中心小學(xué)中選取了具有代表性的吳家英里小學(xué)作為樣本校。
課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時(shí)2授課日期2016.3任課教師劉娜目標(biāo)群體14級(jí)五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識(shí)目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計(jì)算方法. 職業(yè)通用能力目標(biāo): 正確分析問題的能力 制造業(yè)通用能力目標(biāo): 正確分析問題的能力學(xué)習(xí)重點(diǎn)直線的斜率公式的應(yīng)用.學(xué)習(xí)難點(diǎn)直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問教學(xué)媒體黑板、粉筆
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋果,小王從中任意選取了10個(gè)蘋果,編上號(hào)并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號(hào)12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 在統(tǒng)計(jì)中,所研究對(duì)象的全體叫做總體,組成總體的每個(gè)對(duì)象叫做個(gè)體. 上面的實(shí)驗(yàn)中,這批蘋果的質(zhì)量是研究對(duì)象的總體,每個(gè)蘋果的質(zhì)量是研究的個(gè)體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績(jī),指出其中的總體與個(gè)體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績(jī)是總體,每一個(gè)學(xué)生的數(shù)學(xué)期末考試成績(jī)是個(gè)體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個(gè)體. 說明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動(dòng) 求解 通過例題進(jìn)一步領(lǐng)會(huì) 35
同學(xué)們,今天是5月18日,你們知道是什么日子嗎?從1977年開始,每年的5月18日為國(guó)際博物館日。到今年已經(jīng)有39年了。這一天世界各地博物館都將舉辦各種宣傳、紀(jì)念活動(dòng),慶祝自己的節(jié)日,讓更多的人了解博物館,更好地發(fā)揮博物館的社會(huì)功能。當(dāng)今博物館在城市中扮演了越來越重要的角色,博物館日益融入了市民的生活。在法國(guó)巴黎,有兩個(gè)地方幾乎每天排隊(duì)。一個(gè)地方是地鐵站,另一個(gè)地方,就是博物館。國(guó)際上人均擁有博物館數(shù)量最多的城市德國(guó)柏林,每10萬人有4.7座博物館。而整個(gè)德國(guó)博物館有近6000座,每年的觀眾1億多。德國(guó)博物館協(xié)會(huì)主席驕傲地宣布:近年來德國(guó)人對(duì)博物館的喜愛甚至超過了足球。同學(xué)們,你們喜歡參觀博物館嗎?這里有藝術(shù)的靈感,歷史的厚重;也有奇妙的世界,驚喜的角落;
(4)提出問題:三種運(yùn)輸方式有哪些異同 組織學(xué)生分析填表,反饋和糾正.提出問題:影響自由擴(kuò)散,協(xié)助擴(kuò)散和主動(dòng)運(yùn)輸速度的主要因素各是什么 畫出細(xì)胞對(duì)某物的自由擴(kuò)散,協(xié)助擴(kuò)散和主動(dòng)運(yùn)輸速度隨細(xì)胞外濃度的改變而變化的曲線圖組織學(xué)生分組討論,并作圖,展示各組的成果.教學(xué)說明:本環(huán)節(jié)鞏固理論知識(shí)是對(duì)課本知識(shí)擴(kuò)展和對(duì)重點(diǎn),難點(diǎn)內(nèi)容的深入理解和總結(jié),只有理解了三種運(yùn)輸方式的異同,才能完成本環(huán)節(jié)教學(xué)任務(wù),既突顯書本知識(shí),又培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的精神,提高學(xué)生制做圖表的能力和抽象化思維能力的形成.2.大分子的運(yùn)輸引導(dǎo)學(xué)生回憶分泌蛋白的分泌過程,得出胞吐現(xiàn)象,提出問題:那大家知道白細(xì)胞是如何吃掉病菌的嗎 顯示有關(guān)圖片.強(qiáng)調(diào):胞吞和胞吐作用都需要能量提出問題:胞吞和胞吐體現(xiàn)了細(xì)胞膜結(jié)構(gòu)的特點(diǎn)是什么 與書本前面知識(shí)相聯(lián)系.(四)技能訓(xùn)練指導(dǎo)學(xué)生就《技能訓(xùn)練》部分進(jìn)行討論五,反饋練習(xí)1.教師小結(jié)幾種運(yùn)輸方式,特別是自由擴(kuò)散,協(xié)助擴(kuò)散和主動(dòng)運(yùn)輸?shù)奶攸c(diǎn)
蘇格拉底把裝有毒酒的杯子舉到胸口,平靜地說:“分手的時(shí)候到了,我將死,你們活下來,是誰的選擇好,只有天知道。”說畢,一口喝干了毒酒。(2) 蘇格拉底臨死前對(duì)一個(gè)叫克力同的人說了這樣一番話。克力同,我告訴你,這幾天一直有一個(gè)神的聲音在我心中曉喻我,他說:“蘇格拉底,還是聽我們的建議吧,我們是你的衛(wèi)士。不要考慮你的子女、生命或其他東西勝過考慮什么是公正?!聦?shí)上你就要離開這里了。當(dāng)你去死的時(shí)候,你是個(gè)犧牲品,但不是我們所犯錯(cuò)誤的犧牲品,而是你同胞所犯錯(cuò)誤的犧牲品。但你若用這種可恥的方法逃避,以錯(cuò)還錯(cuò),以惡報(bào)惡,踐踏你自己和我們訂立的協(xié)議合約,那么你傷害了你最不應(yīng)該傷害的,包括你自己、你的朋友、你的國(guó)家,還有我們。到那時(shí),你活著面對(duì)我們的憤怒,你死后我們的兄弟、冥府里的法律也不會(huì)熱情歡迎你;因?yàn)樗鼈冎滥阍噲D盡力摧毀我們。別接受克力同的建議,聽我們的勸告吧?!?/p>
4、課堂討論:社會(huì)主義的根本原則是共同富裕,這也是正確處理分配關(guān)系的目標(biāo)。而十五大報(bào)告卻進(jìn)一步明確指出“允許和鼓勵(lì)一部分人通過誠(chéng)實(shí)勞動(dòng)和合法經(jīng)營(yíng)先富起來,允許和鼓勵(lì)資本、技術(shù)等生產(chǎn)要素參與收益分配”。這矛盾嗎?為什么?以小組方式進(jìn)行討論,再以代表的形式發(fā)表意見,這樣既調(diào)動(dòng)了學(xué)生的積極性,也使學(xué)生對(duì)內(nèi)容有了更深層次的了解。最后老師加以總結(jié),用“蛋糕效應(yīng)”來闡述“效率優(yōu)先,兼顧公平”的關(guān)系,既形象又貼切,加深學(xué)生的理解。本課時(shí)內(nèi)容比較抽象,學(xué)生對(duì)于概念的理解有較大的難度。因此在教學(xué)中我采用多媒體課件教學(xué),聯(lián)系生活實(shí)際,讓學(xué)生在生活中去體會(huì)貨幣的職責(zé),區(qū)分貨幣的職能,以便達(dá)到學(xué)以致用的目的。同時(shí)適時(shí)設(shè)置疑問,讓學(xué)生與我共同思考,真正實(shí)現(xiàn)“師生互動(dòng),生生互動(dòng)”,調(diào)動(dòng)學(xué)生積極,主動(dòng)的參與到教學(xué)實(shí)踐活動(dòng)中。(三)課堂小結(jié),強(qiáng)化認(rèn)識(shí)。(2—3分鐘)通過歸納小結(jié),既強(qiáng)調(diào)了重點(diǎn),又鞏固了本節(jié)知識(shí),幫助學(xué)生形成知識(shí)網(wǎng)絡(luò),便于課后理解記憶。
教師點(diǎn)撥:是社會(huì)主義意識(shí)形態(tài)的本質(zhì)體現(xiàn),是全國(guó)人民團(tuán)結(jié)奮斗的共同思想基礎(chǔ)。④建設(shè)社會(huì)主義核心價(jià)值體系的要求設(shè)置探究問題:建設(shè)社會(huì)主義核心價(jià)值體系的要求有哪些?學(xué)生自主學(xué)習(xí)教材,得出結(jié)論板書:3建設(shè)社會(huì)主義核心價(jià)值體系的要求設(shè)計(jì)意圖:在掌握了內(nèi)容的基礎(chǔ)上,這一部分知識(shí)的學(xué)習(xí)水到渠成。高舉旗幟科學(xué)發(fā)展板書:1、中共引領(lǐng)文化前進(jìn)方向的旗幟是——中國(guó)特色社會(huì)主義設(shè)置探究問題:高舉中國(guó)特色社會(huì)主義偉大旗幟最根本的要求是什么?學(xué)生自主學(xué)習(xí),回答問題板書:2高舉中國(guó)特色社會(huì)主義偉大旗幟,最根本的是堅(jiān)持中國(guó)特色社會(huì)主義理論體系。教師繼續(xù)追問:這一理論體系的基本內(nèi)涵是什么?能否舉例說明這一理論體系有什么特點(diǎn)。學(xué)生討論,教師點(diǎn)撥:這個(gè)理論體系,堅(jiān)持和發(fā)展了馬克思列寧主義、毛澤東思想,是馬克思主義中國(guó)化最新成果。中國(guó)特色社會(huì)主義理論體系具有強(qiáng)大的生命力、創(chuàng)造力、感召力,是不斷豐富和發(fā)展的馬克思主義
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點(diǎn)與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點(diǎn)概念,進(jìn)一步理解零點(diǎn)判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念;2、理 解函數(shù)零點(diǎn)與方程的根以及函數(shù)圖象與x軸交點(diǎn)的關(guān)系,掌握零點(diǎn)存在性定理的運(yùn)用;3、在認(rèn)識(shí)函數(shù)零點(diǎn)的過程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;b.邏輯推理:零點(diǎn)判定定理;c.數(shù)學(xué)運(yùn)算:運(yùn)用零點(diǎn)判定定理確定零點(diǎn)范圍;d.直觀想象:運(yùn)用圖形判定零點(diǎn);e.數(shù)學(xué)建模:運(yùn)用函數(shù)的觀點(diǎn)方程的根;
本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問題。1.了解函數(shù)的零點(diǎn)、方程的根與圖象交點(diǎn)三者之間的聯(lián)系.2.會(huì)借助零點(diǎn)存在性定理判斷函數(shù)的零點(diǎn)所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點(diǎn)個(gè)數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;2.邏輯推理:借助圖像判斷零點(diǎn)個(gè)數(shù);3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)或零點(diǎn)所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點(diǎn)概念.重點(diǎn):零點(diǎn)的概念,及零點(diǎn)與方程根的聯(lián)系;難點(diǎn):零點(diǎn)的概念的形成.
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識(shí).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊(cè)書中的重點(diǎn)內(nèi)容,又是對(duì)函數(shù)知識(shí)的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
三、切實(shí)加強(qiáng)領(lǐng)導(dǎo),落實(shí)改善醫(yī)療服務(wù)工作責(zé)任1、加強(qiáng)組織管理,務(wù)求工作實(shí)效。要堅(jiān)持以人為本,以病人為中心,切實(shí)加強(qiáng)組織領(lǐng)導(dǎo),深入貫徹落實(shí)《x進(jìn)一步改善醫(yī)療服務(wù)行動(dòng)計(jì)劃實(shí)施方案》,牢固樹立服務(wù)意識(shí),做好調(diào)研分析,以問題為導(dǎo)向,加強(qiáng)監(jiān)督和指導(dǎo),持續(xù)改進(jìn)醫(yī)療服務(wù)管理,要統(tǒng)籌協(xié)調(diào)醫(yī)療資源,不斷完善醫(yī)療信息化建設(shè),加強(qiáng)人力資源管理,科學(xué)設(shè)計(jì)服務(wù)流程,為改善醫(yī)療服務(wù)提供基本保障,讓人民群眾切實(shí)感受到改善醫(yī)療服務(wù)行動(dòng)計(jì)劃帶來的看得見摸得著的實(shí)惠。2、樹立典型示范,推廣先進(jìn)經(jīng)驗(yàn)。要不斷發(fā)掘和樹立改善醫(yī)療服務(wù)的先進(jìn)典型,認(rèn)真總結(jié)推廣先進(jìn)經(jīng)驗(yàn),宣傳推廣一批示范崗位、示范個(gè)人,形成典型帶動(dòng)、示范引領(lǐng)的工作氛圍。要將宣傳工作與改善醫(yī)療服務(wù)同步推進(jìn),加強(qiáng)與各類媒體的溝通合作,做到集中宣傳與日常宣傳相結(jié)合,傳統(tǒng)媒體宣傳與新興媒體宣傳相結(jié)合,持續(xù)宣傳改善醫(yī)療服務(wù)典型和成效。
2重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)用各種方法、材料制作未來的學(xué)校模型。第一課時(shí):設(shè)計(jì)制作學(xué)校的平面圖第二課時(shí):設(shè)計(jì)制作學(xué)校的立體模型。教學(xué)難點(diǎn)大膽想象,小組協(xié)作,創(chuàng)想出與眾不同的學(xué)校創(chuàng)意。第一課時(shí):學(xué)校建筑的布局。第二課時(shí):設(shè)計(jì)與眾不同的未來的建筑。3教學(xué)過程3.1 第一學(xué)時(shí)