提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中地理選修1板塊構(gòu)造學(xué)說教案

  • 人教版新課標高中物理必修2向心加速度說課稿

    人教版新課標高中物理必修2向心加速度說課稿

    d.某物體沿直線向東運動,原來的速度是5m/s,2s后速度減小到3m/s,求2s內(nèi)物體速度變化。④如何探究物體作勻速圓周運動時,在Δt時間內(nèi)的速度變化?分析:有了同一直線上速度變化的鋪墊后,討論物體做勻速圓周運動速度的變化就比較自然了,為了給向心加速度方向的學(xué)習(xí)打好基礎(chǔ),可以通過小組協(xié)作,進一步完成下列思考題,使同學(xué)們認識到:時間間隔起短,速度變化的方向起接近半徑方向。(多媒體屏幕投影)a.物體沿半徑為1m的軌道做勻速圓周運動,線速度大小為,求1s內(nèi)物體速度變化并畫出1s內(nèi)速度變化的示意圖。b.分別求出上題中物體在0.5s、0.25s內(nèi)速度變化并畫出相應(yīng)的示意圖。由于沒有辦法直接利用實驗來驗證速度變化的方向,所以,我們采用提供思考題的方法,引導(dǎo)同學(xué)在合作學(xué)習(xí)、自主探究中完成。有了速度變化的研究為鋪墊,加速度的方向問題就迎刃而解了。

  • 人教版新課標高中物理必修2行星的運動說課稿

    人教版新課標高中物理必修2行星的運動說課稿

    一、教材分析行星的運動選自人教版普通高中物理必修2第六章第1節(jié)。本節(jié)教學(xué)既是前面《運動的描述》和《曲線運動》內(nèi)容的進一步的延伸和拓展,又能為后面學(xué)習(xí)萬有引力定律做鋪墊。在本章中占有較為重要的地位,具有承前啟后的作用。同時該節(jié)內(nèi)容也涉及大量物理史實、貼近學(xué)生生活和聯(lián)系社會實際的事實,可進一步培育學(xué)生的科學(xué)情感、精神和發(fā)展觀。(一)教學(xué)目標 1.知識與技能(1)知道地心說和日心說的基本內(nèi)容。(2.)掌握理解開普勒三大定律的內(nèi)容,并能應(yīng)用。(3)理解人們對行星運動的認識過程是漫長復(fù)雜的,真理是來之不易的。2.過程與方法通過托勒密、哥白尼、第谷·布拉赫、開普勒等幾位科學(xué)家對行星運動的不同認識,了解人類認識事物本質(zhì)的曲折性并加深對行星運動的理解。3.情感、態(tài)度與價值觀(1)澄清對天體運動神秘、模糊的認識,掌握人類認識自然規(guī)律的科學(xué)方法。(2)感悟科學(xué)是人類進步不竭的動力。

  • 人教版新課標高中物理必修2驗證機械能守恒定律說課稿

    人教版新課標高中物理必修2驗證機械能守恒定律說課稿

    一、 教材分析與學(xué)情分析教材分析人民教育出版社普通高中課程標準實驗教科書必修2第七章第九節(jié)。本節(jié)內(nèi)容安排在學(xué)習(xí)機械能守恒定律之后的目的,是為了使學(xué)生在理論上對機械能守恒定律有所了解的基礎(chǔ)上,通過實驗測量及對實驗數(shù)據(jù)的分析處理,對機械能守恒定律及條件有深刻的認識。學(xué)情分析知識層面:學(xué)生已經(jīng)掌握了動能、重力勢能等概念以及動能定理、機械能守恒定律等定理、定律;知道功是能量轉(zhuǎn)換的量度以及機械能守恒的條件。能力層面:學(xué)生已具備一定的實驗操作技能,會用打點計時器以及直尺等實驗儀器。具備一定的數(shù)據(jù)處理能力。二、教學(xué)目標與重點、難點教學(xué)目標知識與技能:1、會用打點計時器打下的紙帶計算物體運動的速度。2、掌握驗證機械能守恒定律的實驗原理。

  • 人教版新課標高中物理必修2追尋守恒量—能量說課稿2篇

    人教版新課標高中物理必修2追尋守恒量—能量說課稿2篇

    [小結(jié)]師:下面同學(xué)們概括總結(jié)本節(jié)所學(xué)的內(nèi)容。請一個同學(xué)到黑板上總結(jié),其他同學(xué)在筆記本上總結(jié),然后請同學(xué)評價黑板上的小結(jié)內(nèi)容。 (學(xué)生認真總結(jié)概括本節(jié)內(nèi)容,并把自己這節(jié)課的體會寫下來、比較黑板上的小結(jié)和自己的小結(jié),看誰的更好,好在什么地方。) 生:本節(jié)課我們通過伽利略理想斜面實驗,分析得出了能量以及動能和勢能的概念,從能量的相互轉(zhuǎn)化角度認識到,在動能和勢能的相互轉(zhuǎn)化過程中,能的總量保持不變,即能量是守恒的。通過這節(jié)課的學(xué)習(xí),使我們建立起了守恒的思想。 點評:總結(jié)課堂內(nèi)容,培養(yǎng)學(xué)生概括總結(jié)能力。 教師要放開,讓學(xué)生自己總結(jié)所學(xué)內(nèi)容,允許內(nèi)容的順序不同,從而構(gòu)建他們自己的知識框架。[布置作業(yè)]課后討論 P3“問題與練習(xí)”中的問題。[課外訓(xùn)練]以豎直上拋的小球為例說明小球的勢能和動能的轉(zhuǎn)化情況。在這個例子中是否存在著能的總量保持不變?

  • 人教版新課標高中物理必修2圓周運動說課稿3篇

    人教版新課標高中物理必修2圓周運動說課稿3篇

    設(shè)計意圖:通過設(shè)疑、討論及學(xué)生的親身體驗與教師的引導(dǎo),得到描述圓周運動快慢的兩個物理量,也就成功的打破了學(xué)生在認識上的思維障礙,突破了物理概念教學(xué)的難點。在解決線速度和角速度的問題之后,我將引領(lǐng)學(xué)生學(xué)習(xí)勻速圓周運動的概念以及勻速圓周運動中線速度、角速度的特點。并引出勻速圓周運動中周期、轉(zhuǎn)速的知識。為了加深學(xué)生對線速度、角速度與半徑關(guān)系的認識,我設(shè)計了第三個學(xué)生體驗活動:四名學(xué)生以我為圓心做圓周運動,四名學(xué)生始終并列,這時里圈同學(xué)走動不急不慢,而外圈同學(xué)則要小跑。通過學(xué)生的活動,不難發(fā)現(xiàn)在角速度相同的情況下,半徑越大的線速度也越大。定性的得到了線速度、角速度與半徑的關(guān)系。接下來讓學(xué)生利用所學(xué)知識推導(dǎo)線速度、角速度與半徑的關(guān)系。設(shè)計意圖:這樣就通過設(shè)疑、學(xué)生猜想、體驗、推導(dǎo)的方式得到了結(jié)論,突破了本節(jié)課的難點即線速度、角速度與半徑的關(guān)系。

  • 人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿

    人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿

    由此引導(dǎo)學(xué)生的深思,學(xué)生通過合作探究,幫助學(xué)生認識到不注重思想道德修養(yǎng),即使掌握了豐富的科學(xué)知識,也難以避免人格上的缺失,甚至危害社會。進而總結(jié)出關(guān)系二:加強思想道德修養(yǎng),能夠促進科學(xué)文化修養(yǎng)??茖W(xué)文化修養(yǎng)的意義播放感動中國人物徐本禹先進事跡短片。學(xué)生觀看完視頻后,思考:從徐本禹的事跡中,我們可以了解到我們加強科學(xué)文化修養(yǎng)的根本意義是什么?引導(dǎo)學(xué)生結(jié)合自身體會,發(fā)表各自見解,在此基礎(chǔ)上幫助學(xué)生總結(jié)出,要使自己的思想道德境界不斷升華,為人民服務(wù)的本領(lǐng)不斷提高,成為一個真正有知識文化涵養(yǎng)的人,成為一個脫離低級趣味的人、有益于人民的人。知識點三:追求更高的思想道德目標根據(jù)教材110探究活動(思想道德的差異、反應(yīng)人們世界觀、人生觀、價值觀的差異)思考:用公民的基本道德規(guī)范來衡量這些觀點,你贊成哪些觀點?反對哪些觀點?小組進行合作探究,引導(dǎo)學(xué)生根據(jù)公民基本道德規(guī)范對這些價值觀進行評析。

  • 人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿3篇

    人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿3篇

    (3)改造主觀世界同改造客觀世界的關(guān)系。改造客觀世界同改造主觀世界,是相互聯(lián)系、相互作用的。改造主觀世界是為了更好地改造客觀世界,人們在改造客觀世界的同時也改造著自己的主觀世界。通過自覺改造主觀世界,又能提高改造客觀世界的能力。師:人們對自己的思想道德境界的追求,是永遠止境的。讓我們共同努力,在踐行社會主義思想道德的過程中,不斷追求更高的目標,像無數(shù)先輩那樣,加入到為共產(chǎn)主義遠大理想而奮斗的行列中吧!課堂小結(jié)通過本節(jié)課學(xué)習(xí)使我們認識到面對現(xiàn)實生活中的思想道德沖突,加強知識文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標的必要性;把握了知識文化修養(yǎng)與思想道德修養(yǎng)的含義及其相互關(guān)系;明確了我們應(yīng)該和怎樣追求更高的思想道德目標;認識到這是一個永無止境的過程。我們要腳踏實地,從現(xiàn)在做起、從點滴小事做起,不斷提高知識文化修養(yǎng)和思想道德修養(yǎng),追求更高的思想道德目標。

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項式定理》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項式定理》教學(xué)設(shè)計

    一、定義:  ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.1《計數(shù)原理》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.1《計數(shù)原理》教學(xué)設(shè)計

    授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學(xué)目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應(yīng)用問題; 3.通過對一些應(yīng)用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書設(shè)計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點坐標教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標準方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的標準方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

上一頁123...213214215216217218219220221222223224下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!