(一)知識(shí)與技能1.理解重力勢能的概念,會(huì)用重力勢能的定義進(jìn)行計(jì)算。2.理解重力勢能的變化和重力做功的關(guān)系,知道重力做功與路徑無關(guān)。3.知道重力勢能的相對(duì)性,知道重力勢能是物體和地球系統(tǒng)共有的(二)過程與方法:用所學(xué)功的概念推導(dǎo)重力做功與路徑的關(guān)系,親身感受知識(shí)的建立過程(三)情感、態(tài)度與價(jià)值觀1.滲透從對(duì)生活中有關(guān)物理現(xiàn)象的觀察,得到物理結(jié)論的方法,激發(fā)和培養(yǎng)學(xué)生探索自然規(guī)律的興趣.2.培養(yǎng)學(xué)生遵守社會(huì)公德,防止高空墜物。【教學(xué)重點(diǎn)】重力勢能的概念及重力做功跟物體重力勢能改變的關(guān)系?!窘虒W(xué)難點(diǎn)】重力勢能的系統(tǒng)性和相對(duì)性?!窘虒W(xué)方法】啟發(fā)、引導(dǎo)、講練結(jié)合【教學(xué)過程】一、新課引入有句話是“搬起石頭砸自己的腳”,從物理的角度看待這一問題,搬起的石頭有了做功的本領(lǐng),它就具有了能,這種能我們稱為重力勢能。我們今天就來學(xué)習(xí)重力勢能。二、新課教學(xué)
一、學(xué)習(xí)任務(wù)分析1.教材的地位和作用在物理學(xué)中,能量并不是由功定義的。能量的概念是在人類追尋“運(yùn)動(dòng)中的守恒量是什么”的過程中發(fā)展起來的。能量概念之所以重要,就是因?yàn)樗且粋€(gè)守恒量。守恒關(guān)系是自然中十分重要的關(guān)系,從中學(xué)開始加強(qiáng)學(xué)生對(duì)守恒關(guān)系的認(rèn)識(shí)是有益的,因?yàn)樗菢O為重要的研究方向。根據(jù)這種認(rèn)識(shí),所以本節(jié)從追尋守恒量出發(fā)引入能量概念,為能量學(xué)習(xí)奠定了基礎(chǔ)并把這種物理思想滲透在能量學(xué)習(xí)的全過程。2.學(xué)習(xí)的主要任務(wù)“追尋守恒量”一節(jié),主要是使學(xué)生了解守恒思想的重要性。學(xué)生在學(xué)習(xí)本節(jié)課前已經(jīng)學(xué)習(xí)了能量的有關(guān)知識(shí),在過去的教學(xué)中,是先學(xué)習(xí)能量的概念,而后研究一兩個(gè)具體問題,發(fā)現(xiàn)動(dòng)能與勢能之和在某些過程中不變,由此引出機(jī)械能守恒定律?!皺C(jī)械能守恒”這個(gè)詞學(xué)生并不陌生,但是讓學(xué)生說出自己對(duì)它的認(rèn)識(shí)又不是一件容易的事。
知識(shí)與技能1.知道地心說和日心說的基本內(nèi)容.2.知道所有行星繞太陽運(yùn)動(dòng)的軌道都是橢圓,太陽處在橢圓的一個(gè)焦點(diǎn)上.3.知道所有行星的軌道的半長軸的三次方跟它的公轉(zhuǎn)周期的二次方的比值都相等,且這個(gè)比值與行星的質(zhì)量無關(guān),但與太陽的質(zhì)量有關(guān).4.理解人們對(duì)行星運(yùn)動(dòng)的認(rèn)識(shí)過程是漫長復(fù)雜的,真理是來之不易的.過程與方法通過托勒密、哥白尼、第谷·布拉赫、開普勒等幾位科學(xué)家對(duì)行星運(yùn)動(dòng)的不同認(rèn)識(shí),了解人類認(rèn)識(shí)事物本質(zhì)的曲折性并加深對(duì)行星運(yùn)動(dòng)的理解.情感、態(tài)度與價(jià)值觀1.澄清對(duì)天體運(yùn)動(dòng)裨秘、模糊的認(rèn)識(shí),掌握人類認(rèn)識(shí)自然規(guī)律的科學(xué)方法.2.感悟科學(xué)是人類進(jìn)步不竭的動(dòng)力.教學(xué)重點(diǎn)理解和掌握開普勒行星運(yùn)動(dòng)定律,認(rèn)識(shí)行星的運(yùn)動(dòng).學(xué)好本節(jié)有利于對(duì)宇宙中行星的運(yùn)動(dòng)規(guī)律的認(rèn)識(shí),掌握人類認(rèn)識(shí)自然規(guī)律的科學(xué)方法,并有利于對(duì)人造衛(wèi)星的學(xué)習(xí).
(給出儀器后先讓學(xué)生思考如何設(shè)計(jì)實(shí)驗(yàn)、安裝儀器、設(shè)計(jì)實(shí)驗(yàn)步驟,而后教師總結(jié))實(shí)驗(yàn)步驟如下:①安裝調(diào)整斜槽 :用圖釘把白紙釘在豎直板上,在木板的左上角固定斜槽。②調(diào)整木板 :用懸掛在槽口的重錘線把木板調(diào)整到豎直方向,并使木板平面與小球下落的豎直面平行,然后把重錘線方向記錄到釘在木板上的白紙上,固定木板,使在重復(fù)實(shí)驗(yàn)的過程中,木板與斜槽的相對(duì)位置保持不變。③確定坐標(biāo)原點(diǎn):把小球放在槽口處,用鉛筆記下小球在槽口時(shí)球心在木板上的水平投影點(diǎn)O,O即為坐標(biāo)原點(diǎn)。④描繪運(yùn)動(dòng)軌跡 :用鉛筆的筆尖輕輕地靠在木板的平面上,不斷調(diào)整筆尖的位置,使從斜槽上滾下的小球正好碰到筆尖,然后就用鉛筆在該處白紙上點(diǎn)上一個(gè)黑點(diǎn),這就記下了小球球心所對(duì)應(yīng)的位置。保證小球每次從槽上開始滾下的位置都相同,用同樣的方法可找出小球平拋軌跡上的一系列位置。取下白紙,描繪小球做平拋運(yùn)動(dòng)的軌跡。
動(dòng)畫展示三個(gè)宇宙速度(四) 讓學(xué)生具有振興中華的使命感與責(zé)任感本節(jié)課的最后,播放了一段美國登月的視頻,讓學(xué)生發(fā)現(xiàn)一些奇妙的物理現(xiàn)象,引導(dǎo)學(xué)生發(fā)現(xiàn)月球的背景是什么顏色,宇航員行走的模樣等等,預(yù)計(jì)不久的將來,哪個(gè)國家也將登上月球,同學(xué)們高呼“中國”,那么我們現(xiàn)在能做些什么呢,讓同學(xué)感想到:我們是祖國的未來的希望,現(xiàn)在需要努力學(xué)習(xí)科學(xué)文化知識(shí),將來為祖國的航天事業(yè)做貢獻(xiàn)。要培養(yǎng)學(xué)生堅(jiān)韌不撥、勇于探索、協(xié)力合作的科學(xué)精神以及嚴(yán)謹(jǐn)求實(shí)、謙虛謹(jǐn)慎、勇于質(zhì)疑科學(xué)態(tài)度;也要培養(yǎng)學(xué)習(xí)者熱愛科學(xué)、熱愛祖國的情感;努力學(xué)習(xí)、振興中華的責(zé)任感。這些策略在本案例中得到了體現(xiàn)。(五)練習(xí)反饋,拓展延伸:[例題1]“2003年10月15日9時(shí),我國神舟五號(hào)宇宙飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,把我國第一位航天員楊利偉送入太空。飛船繞地球飛行14圈后,于10月16日6時(shí)23分安全降落在內(nèi)蒙古主著陸場?!?/p>
《勻速圓周運(yùn)動(dòng)》為高中物理必修2第五章第4節(jié).它是學(xué)生在充分掌握了曲線運(yùn)動(dòng)的規(guī)律和曲線運(yùn)動(dòng)問題的處理方法后,接觸到的又一個(gè)美麗的曲線運(yùn)動(dòng),本節(jié)內(nèi)容作為該章節(jié)的重要部分,主要要向?qū)W生介紹描述圓周運(yùn)動(dòng)的幾個(gè)基本概念,為后繼的學(xué)習(xí)打下一個(gè)良好的基礎(chǔ)。人教版教材有一個(gè)的特點(diǎn)就是以實(shí)驗(yàn)事實(shí)為基礎(chǔ),讓學(xué)生得出感性認(rèn)識(shí),再通過理論分析總結(jié)出規(guī)律,從而形成理性認(rèn)識(shí)。教科書在列舉了生活中了一些圓周運(yùn)動(dòng)情景后,通過觀察自行車大齒輪、小齒輪、后輪的關(guān)聯(lián)轉(zhuǎn)動(dòng),提出了描述圓周運(yùn)動(dòng)的物體運(yùn)動(dòng)快慢的問題。二、教學(xué)目標(biāo)1.知識(shí)與技能①知道什么是圓周運(yùn)動(dòng)、什么是勻速圓周運(yùn)動(dòng)。理解線速度的概念;理解角速度和周期的概念,會(huì)用它們的公式進(jìn)行計(jì)算。②理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T。③理解勻速圓周運(yùn)動(dòng)是變速運(yùn)動(dòng)。④能夠用勻速圓周運(yùn)動(dòng)的有關(guān)公式分析和解決具體情景中的問題。
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對(duì)斜二測方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變?!?/p>
1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對(duì)邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
問題導(dǎo)入:問題一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒有其他差異。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號(hào)語言:任意a?α,都有l(wèi)⊥a?l⊥α.
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點(diǎn)O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).