3、師:不相交的兩條直線畫長一些會怎樣?量一量兩條相交直線做組成的角分別是多少度?4、由小組同學(xué)在原記錄單上動手合作操作,并進行討論、匯報。5、師生共同總結(jié):不相交的兩條直線畫長一些仍不相交,這兩條直線叫平行線,也可以說它們相互平行;相交的兩條直線形成的四個角,如果都是90度,就說這兩條直線相互垂直,其中一條叫另外一條的垂線,這兩條直線的焦點叫做垂足。6、生齊讀P65平行和垂直概念,并畫下來。7、今天我們就要一起來認(rèn)識認(rèn)識平行與垂直。(揭示課題)三、解釋應(yīng)用,鞏固新知1、我們天天都在和垂線與平行線打交道:書本面相鄰的兩邊是互相垂直的,相對的兩邊是互相平行的。2、P64主題圖,找一找,圖上有哪些平行和垂直的現(xiàn)象?3、做一做1找一找、想一想還有哪些物體的邊是互相垂直的,哪些物體的邊是互相平行的?
3學(xué)生探討結(jié)束后讓學(xué)生代表發(fā)言,總結(jié)歸納三角形三邊的不等關(guān)系。學(xué)生代表可結(jié)合教具演示。教師問:我們是否要把三條線段中的每兩條線段都相加后才能作出判斷?有沒有快捷的方法?(用較小的兩條線段的和與第三條線段的大小關(guān)系來檢驗)。4得到結(jié)論:三角形任意兩邊之和大于第三邊(電腦顯示)。教師問:三角形的兩邊之和大于第三邊,那么,三角形的兩邊之差與第三邊有何關(guān)系呢?感興趣的同學(xué)還可以下課繼續(xù)研究。5鞏固練習(xí):為了營造更美的城市,許多城市加強了綠化建設(shè)。這些綠化地帶是不允許踩的。(電腦動畫演示有人斜穿草地的實踐問題)。他運用了我們學(xué)習(xí)過的什么知識?6(1)有人說自己步子大,一步能走兩米多,你相信嗎?為什么?(由學(xué)生小組討論后回答。然后電腦演示籃球明星姚明的身高及腿長,以此來判斷步幅應(yīng)有多大?)
一、初步感知間隔的含義1、請同學(xué)們伸出右手,張開,數(shù)一數(shù),5個手指之間有幾個空格?在數(shù)學(xué)上,我們把 空格叫做間隔,也就是說,5個手指之間有幾個間隔?4個間隔是在幾個手指之間?2. 其實,這樣的數(shù)學(xué)問題,在我們的生活中,隨處可見。誰能舉幾個這樣的例子3、看圖:在畫面上我們看到春天桃紅柳綠,到處是一派生機勃勃的景象,你們知道嗎?3月12日是什么日子,這一天全國上下到處都在植樹,為保護環(huán)境獻出自己的一份力量。 出示圖:這里從頭到尾栽了幾棵樹,數(shù)一數(shù),它們之間又有幾個間隔呢?你發(fā)現(xiàn)了什么?誰來說一說?同時板書。4、那你能像這樣用一個圖表示出來嗎?請你們選擇一種動手畫一畫吧!5、匯報:畫了8棵樹,他們之間有7個間隔數(shù),9棵樹之間有8個間隔?!?、你發(fā)現(xiàn)植樹棵樹和間隔數(shù)之間有什么規(guī)律呢?(自己先想想,再把你的想法和伙伴們互相交流一下)。反饋:誰來說說你的發(fā)現(xiàn)?評價:哦,這是你的發(fā)現(xiàn)……你還能用一個算式來概括。邊板書邊說:同學(xué)們都發(fā)現(xiàn)了從頭到尾栽一排樹時,植樹棵樹比間隔數(shù)多1,(指表格),也可以寫成兩端要栽時,植樹棵數(shù)-間隔數(shù)+1,間隔數(shù)=植樹棵樹-1。
雖然在此之前已經(jīng)聽過多節(jié)有關(guān)的研討課,但臨到自己教學(xué)時才真正體會到本課教學(xué)的艱難。一是信息化時代對郵政編碼的沖突。其實我在教學(xué)前也僅僅只知道學(xué)校和家庭住址的郵編,至于郵政編碼的結(jié)構(gòu)含義等是完全陌生。在課堂前測中了解到,全班僅3人有寫信寄信的經(jīng)歷(這三名學(xué)生的老家都遠離湖北?。麄冎览霞业泥]編,全班有半數(shù)左右的家庭收集不到已經(jīng)郵寄過的舊信封??梢哉f在學(xué)習(xí)本課前師生對郵政編碼都是知之甚少,教師本身都只“半勺水”,何以給學(xué)生“一杯水”?雖然在課前布置學(xué)生收集了一些有關(guān)郵政編碼的知識,自己也進行了大量的查詢,但在實際教學(xué)中仍舊倍感吃力。如有學(xué)生質(zhì)疑“為什么書上北京人民出版社的郵編是100008,它的第三、四位都是0呢”;“為什么我們學(xué)校的郵編4300XX第三、四位也是0呢”;“郵區(qū)是不是指什么市?”“郵區(qū)與市、區(qū)、縣有什么關(guān)系?”一個接一個問題“炮轟”過來,著實招架不住。
1、完成P78“做一做”第二題:讀出下面的分?jǐn)?shù)。2、完成P78“做一做”第一題:直接在書上的橫線上寫出對應(yīng)的百分?jǐn)?shù)。3、P79練習(xí)十九第4題:讀出或?qū)懗鰣髾谥械陌俜謹(jǐn)?shù)。4、“做一做”第四題:學(xué)生根據(jù)自己的理解,說說分?jǐn)?shù)和百分?jǐn)?shù)在意義上有何不同。四、布置作業(yè)練習(xí)十九第1~3題。教學(xué)追記:本堂課,我從三個層次入手。第一層:聯(lián)系生活實際引出百分?jǐn)?shù);第二層:理解百分?jǐn)?shù)的具體含義;第三層:教學(xué)百分?jǐn)?shù)的讀寫。三個層次,思路清晰,教學(xué)層次明顯。其中,我把教學(xué)重點放在理解百分?jǐn)?shù)的具體含義上,并及時與分?jǐn)?shù)做了比較,教學(xué)結(jié)構(gòu)較為嚴(yán)謹(jǐn)。2、百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)的互化教學(xué)目標(biāo):1、使學(xué)生理解并掌握百分?jǐn)?shù)和小數(shù)互化的方法,能正確地把分?jǐn)?shù)、小數(shù)化成百分?jǐn)?shù)或把百分?jǐn)?shù)化成分?jǐn)?shù)、小數(shù)。2、在計算、比較,分析、探索百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)互化的規(guī)律的過程中,發(fā)展學(xué)生的抽象概括能力。3、通過探索百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)互化的規(guī)律,激發(fā)學(xué)生的數(shù)學(xué)探索意識。
一、創(chuàng)設(shè)情境,猜想驗證1.猜一猜,摸一摸。一盒粉筆若干支,5種不同的顏色。至少摸幾支能保證:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。請學(xué)生獨立思考后,先在小組內(nèi)交流自己的想法,再動手操作試一試,驗證各自的猜想。在這個過程中,教師要加強巡視,要注意引導(dǎo)學(xué)生思考本題與前面所講的抽屜原理有沒有聯(lián)系,如果有聯(lián)系,有什么樣的聯(lián)系,應(yīng)該把什么看成抽屜,要分放的東西是什么。二、觀察比較,分析推理1.說一說,在比較中初步感知。2.想一想,在反思中學(xué)習(xí)推理。三、深入探究,溝通聯(lián)系四、對比練習(xí),感悟新知1.說一說。把紅、黃、藍、白四種顏色的球各10個放到一個袋子里。至少取多少個球,可以保證取到兩個顏色相同的球?2.算一算。向東小學(xué)六年級共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?五、總結(jié)評價六、布置作業(yè)
1.叫一名學(xué)生在班里走動,站在一名學(xué)生的后面。 2.教師舉起一張本單元的單詞圖片。先正確地說出這個單詞第一個字母的讀音的學(xué)生坐下,另一名學(xué)生繼續(xù)在班里走動,繼續(xù)活動。 板書設(shè)計 :My friends 黑板上方:上課前打好的四線三格,在課堂上隨講隨寫的字母Ww, Xx, Yy, Zz 黑板下方: 教案點評: 本課時主要學(xué)習(xí)字母Ww, Xx, Yy, Zz及相關(guān)單詞。因為本課時將結(jié)束字母的學(xué)習(xí),因此在熱身、復(fù)習(xí)環(huán)節(jié),有必要先進行字母Aa-Vv的聽寫。然后出示字母卡、單詞卡讓學(xué)生認(rèn)讀字母和復(fù)習(xí)單詞。呈現(xiàn)新課環(huán)節(jié),教師可將字母教學(xué)放到單詞中進行。在教學(xué)過程 中,教師結(jié)合圖片或?qū)嵨镏饌€進行字母和單詞的教學(xué),可輔以字母課件進行教學(xué),便于學(xué)生更好的領(lǐng)會和掌握。教師要注意側(cè)重字母的書寫教學(xué),使學(xué)生養(yǎng)成正確的書寫習(xí)慣。兩個小游戲“Bingo”和“Listen and show”幫助學(xué)生在趣味活動中鞏固了所學(xué)的全部字母。擴展性活動的設(shè)計目的在于復(fù)習(xí)本單元的單詞。
1.Let’s say學(xué)習(xí)字母Uu, Vv, Ww,以及以這些字母開頭的單詞。2.Let’s do本部分通過有韻律的歌謠,來復(fù)習(xí)鞏固A-W的字母?!窘虒W(xué)重點】學(xué)習(xí)字母Uu, Vv, Ww及以其為首字母的單詞【教學(xué)難點】單詞umbrella, violin, wind和字母Uu, Vv, Ww的發(fā)音.【教具準(zhǔn)備】1 教師準(zhǔn)備教材配套的錄音帶。2 教師準(zhǔn)備 umbrella, vest, violin, window, wind 的圖片和詞卡。3 教師準(zhǔn)備字母卡 Aa----Ww 。【教學(xué)過程】1 熱身、復(fù)習(xí) (Warm-up/Revision)(1)Oral practice學(xué)生口語會話展示。教師可根據(jù)學(xué)生情況提示他們增加對內(nèi)容。(2)游戲:“猜猜看”。教師用簡筆畫的方法在黑板上畫某種交通工具的某個部位,邊畫邊問:What is it? 學(xué)生隨意想象,猜圖說:A panda? A jeep? A pear? … 教師再繼續(xù)畫一兩筆,讓學(xué)生接著猜,并以小組為單位討論,最后由一名學(xué)生代表說出一個答案。教師將圖畫完,帶領(lǐng)學(xué)生一起說: Look! It’s a … 猜對的小組贏得一分。(以交通工具、玩具和文具詞為主) 還可讓學(xué)生代替教師進行此項活動。
教師問:Can you spell these words? 如有學(xué)生能夠拼出單詞,教師要給與表揚并說:那讓我們來看一看他拼的對不對,然后出示單詞卡。如沒有學(xué)生拼出單詞,教師說:我們學(xué)習(xí)單詞不僅要會說還要會寫,今天我們就來學(xué)習(xí)幾個單詞的拼寫,看誰學(xué)得快。然后出示單詞卡。 讓學(xué)生看單詞卡拼讀單詞。 教師讓學(xué)生看單詞回答:How many letters in this word?學(xué)生回答后,讓他們背著拼出單詞。 教師讓學(xué)生在四線三格中默寫字母b, o, k, r, l, e, p, n, c, I, a,教師教學(xué)生在四線三格中書寫單詞。告訴學(xué)生首先要把每個字母書寫正確,然后按照單詞的拼寫把字母寫在一起,注意單詞的每個字母間要有一點距離。教師在教寫ruler和pencil-case時, 注意小寫u和s還沒有學(xué)習(xí)書寫,讓學(xué)生照著板書寫就可以了。 讓學(xué)生照板書抄字頭,然后每個單詞寫一行。 (三)趣味操練(Practice)
(1)提問:用自己的話說一說畫面的內(nèi)容。根據(jù)畫面的內(nèi)容編一道應(yīng)用題??上茸寣W(xué)生自由編題,然后出示:面包房一共做了54個面包,第一隊小朋友買了8個,第二隊小朋友買了22個,現(xiàn)在剩下多少個?(2)全班同學(xué)讀題后提問:題目的已知條件和問題分別是什么?根據(jù)“一共做了54個面包,第一隊小朋友買了8個”這兩個條件可以求什么?(第一隊買后還剩下多少個)怎樣列式?【54-8=46(個)】那要求還剩下多少個?又該怎樣列式?【46-22=24(個)】誰能列一個綜合算式?【54-8-22=24(個)】(列好后,要求學(xué)生說出每一步算式的意義)教師:大家想一想還有沒有不同的想法?(鼓勵學(xué)生從不同角度去思考問題)根據(jù)“第一隊小朋友買了8個,第二隊小朋友買了22個”可以求出什么問題?(兩隊一共買了多少個面包?)可以怎樣列式?【8+22=30(個)】那要求還剩下多少個?又該怎樣列式?【54-30=24(個)】同桌的同學(xué)互相討論一下:如果寫成一個算式,應(yīng)該怎樣列式?
教學(xué)目標(biāo):1、經(jīng)歷簡單的收集、整理、描述和分析數(shù)據(jù)的過程。2、使學(xué)生初步了解數(shù)據(jù)的收集和整理過程,學(xué)會整理簡單的數(shù)據(jù),會看簡單的統(tǒng)計表和統(tǒng)計圖,會根據(jù)統(tǒng)計圖表中的數(shù)據(jù)回答一些簡單的問題。3、使學(xué)生體驗解數(shù)據(jù)的收集、整理、描述和分析的過程,能發(fā)現(xiàn)信息并進行簡單的數(shù)據(jù)分析。4、體會到數(shù)學(xué)知識與實際生活緊密聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生細心觀察的良好學(xué)習(xí)品質(zhì)。教學(xué)重點:繪制縱向復(fù)式條形統(tǒng)計圖。教學(xué)難點:根據(jù)統(tǒng)計圖發(fā)現(xiàn)問題、提出問題、解決問題。教具準(zhǔn)備:課件。教學(xué)過程:一、情境導(dǎo)入:你們知道全球有多少人?中國有多少人嗎?那你們知道自己所在的區(qū)有多少人嗎?下面我們一起對收集到的信息進行整理和分析。二、探究新知:1、根據(jù)統(tǒng)計表,分別完成兩個單式條形統(tǒng)計圖2、根據(jù)兩個條形統(tǒng)計圖你能發(fā)現(xiàn)哪些信息?如果要在一個統(tǒng)計圖中描述這些信息怎么辦?在學(xué)習(xí)復(fù)式統(tǒng)計表時是怎么把兩個單式統(tǒng)計表合并的?
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和