第三,說教學(xué)重點和難點。根據(jù)課程標準的具體要求、學(xué)生實際和社會實際以及教材的邏輯結(jié)構(gòu)和教學(xué)體系,我認為本課的重難點是以下幾個方面。教學(xué)重點:1.理解王昭君的形象2.深入理解杜甫在詩中的情感教學(xué)難點:理解寓意,把握主旨。第四,說教法與學(xué)法。教法:根據(jù)課文特點和學(xué)生實際情況,以誦讀法(示范朗讀、學(xué)生齊讀)、問題探究法、點撥法、討論分析法進行教學(xué)。首先激發(fā)學(xué)生學(xué)習(xí)本文的興趣;然后引導(dǎo)學(xué)生反復(fù)吟哦誦讀,在讀的過程中質(zhì)疑、思考、品析、鑒賞;最后在教師適當?shù)狞c撥下,在集體的熱烈討論中,理解作者的感情,得到新的認識。(解說:使學(xué)生在教師的主導(dǎo)下圍繞中心議題發(fā)表各自的意見,相互交流,相互啟發(fā),相互爭議,激發(fā)他們主動去獲取知識,培養(yǎng)健康情感。)
1、漢武帝尊儒的措施:(1)政治方面:起用很多儒學(xué)家參與國家大政。他規(guī)定,地方定期選出孝子、廉吏當中央任官,甚至還擢升平民、儒士為相。這明顯擴大了官員的隊伍,提高了官員的文化素質(zhì),鞏固了封建統(tǒng)治基礎(chǔ),成為漢武帝文治武功的重要組成部分。也給后世封建王朝在用人方式方法上面提供了寶貴的借鑒和啟迪。(2)思想方面:采納董仲舒的建議,“罷黜百家 獨尊儒術(shù)”(3)教育方面:儒家經(jīng)典“五經(jīng)”為國家規(guī)定的教科書。興辦太學(xué)和設(shè)立地方學(xué)校進行儒學(xué)教育。公元前136年,漢武帝正式規(guī)定《詩》、《書》、《禮》、《易》、《春秋》為“五經(jīng)”;前124年,又在長安興辦太學(xué),規(guī)定太學(xué)生員為博士弟子,一律由儒家五經(jīng)博士負責(zé)教授,學(xué)完經(jīng)考試合格后即可到政府任官。這是封建國家利用政權(quán)的力量興辦教育、提倡儒學(xué),其必然對整個社會的教育事業(yè)有一定的導(dǎo)向作用。
過度:誠如牛頓所說 我之所以能夠取得今天的成就有很大原因是站在巨人的肩膀之上設(shè)問3:為什么這個時代選擇了達爾文來完成這一偉大的發(fā)現(xiàn)呢?(達爾文的個人努力)補充材料:(1831年起,他隨“貝格爾號”考察艦進行環(huán)球考察5年??疾旖Y(jié)束后,在整理考察資料和實物標本的基礎(chǔ)上,經(jīng)過長期的研究,于1859年出版了《物種起源》一書,確立了生物的進化論說明達爾文的個人努力:學(xué)習(xí)、考察、學(xué)習(xí)、不迷信權(quán)威、勇于挑戰(zhàn)、不斷探索的精神,飽覽群書,挑戰(zhàn)和假設(shè)建立在大量的閱讀和觀察的基礎(chǔ)上,科學(xué)實證等等??梢哉f達爾文身上有那個時代的一個濃縮的特征,當然他還有點運氣,不過,機遇永遠是為那些有準備的人提供的。)探究:達爾文“進化論”的影響思路引領(lǐng):科學(xué)理論發(fā)展的影響可以從哪些方面分析?(經(jīng)濟、科學(xué)理論本身、人文學(xué)科、社會影響(對宗教,社會),對其他國家的影響)設(shè)問:達爾文進化論對1859年及以后的社會帶來了非常深遠的影響。有哪些影響呢?①挑戰(zhàn)封建神學(xué)的神創(chuàng)世,促進人類認識的飛躍
2、互聯(lián)網(wǎng)的功用:(1)功用:提供文件傳輸、電子信箱、聊天等服務(wù),在社會各個領(lǐng)域發(fā)揮了巨大的作用,標志著信息化社會的出現(xiàn)。(2)特點:網(wǎng)絡(luò)媒體作為一種新的傳播媒體,具有界面直觀、音色兼?zhèn)?、鏈接靈活和高速傳輸?shù)奶攸c。3、互聯(lián)網(wǎng)的影響:教師提問,學(xué)生思考回答,教師總結(jié) (1)信息經(jīng)濟在世界各地全面發(fā)展,加快了經(jīng)濟全球化的步伐;(2)傳統(tǒng)產(chǎn)業(yè)也借助互聯(lián)網(wǎng)提高管理水平,并通過全球營銷和采購擴大市場;(3)在互聯(lián)網(wǎng)時代,人們可以在家里完成很多工作,提高了工作效率,增加了樂趣;(4)人們的社會交往方式也發(fā)生著改變。(5)也帶來一些負面影響?!竞献魈骄俊?:青少年如何對待網(wǎng)絡(luò):互聯(lián)網(wǎng)在給社會帶來巨大效能的同時,也帶來了巨大的挑戰(zhàn)。青少年應(yīng)該提高自身的道德素養(yǎng),樹立正確的網(wǎng)絡(luò)觀,讓網(wǎng)絡(luò)發(fā)揮出應(yīng)有的作用。
一、教材地位《音樂與影視藝術(shù)》是人教版高中歷史必修(III)第八專題中的第三節(jié)內(nèi)容。音樂、影視藝術(shù)屬于意識形態(tài)范疇,是當時政治、經(jīng)濟的反映,是社會進步的產(chǎn)物。19世紀以來的音樂與影視藝術(shù)糅合了近代科學(xué)技術(shù)的元素,直接引領(lǐng)著文明發(fā)展趨勢和社會風(fēng)尚,滿足人們不同層次的審美需要和精神追求。音樂、影視藝術(shù)在人類日常生活中無處不在,已經(jīng)成為人們?nèi)粘I钪械闹匾M成部分,所以具有重要地位。本課分三個部分介紹了19世紀和20世紀音樂的發(fā)展與變化以及影視藝術(shù)的產(chǎn)生發(fā)展。下面我就談?wù)剬@節(jié)課的教學(xué)思路。二、教材分析1、課標要求課標的要求是:列舉19世紀以來有代表性的音樂作品,理解這些音樂作品的時代性和民族性。了解影視藝術(shù)產(chǎn)生與發(fā)展的歷程,認識其對社會生活的影響。2、教學(xué)目標根據(jù)新課標、教材內(nèi)容、學(xué)生實際,確定教學(xué)目標如下:(1)知識與能力:①列舉19世紀以來有代表性的音樂作品,理解這些音樂作品的時代性和民族性。
一 減數(shù)分裂高一生物減數(shù)分裂說課稿各位評委、老師:大家好,我今天說課的題目是高中生物必修2第二章第一節(jié)〈〈減數(shù)分裂與受精作用〉〉第一部分減數(shù)分裂第一課時精子形成過程。接下來我就從以下幾個方面來說說這一節(jié)課。一、說教材1.教材地位和作用《減數(shù)分裂》這一部分內(nèi)容不僅是第二章的重點內(nèi)容,也是整本書的重點內(nèi)容之一。它以必修一學(xué)過的細胞學(xué)知識、染色體知識、有絲分裂知識和初中生殖種類知識為基礎(chǔ)。通過學(xué)習(xí),使學(xué)生全面認識細胞分裂的種類、實質(zhì)和意義,為后面學(xué)習(xí)遺傳和變異,生物的進化奠定細胞學(xué)基礎(chǔ)。2.教學(xué)目標(1)知識目標:掌握減數(shù)分裂的概念和精子的形成過程;理解減數(shù)分裂和受精作用的意義。(2)能力目標:通過觀察減數(shù)分裂過程中染色體的行為變化,培養(yǎng)學(xué)生識圖、繪圖能力以及比較分析和歸納總結(jié)的能力。
師:建立社會主義思想道德體系,必須牢固樹立社會主義榮辱觀。在我們的社會主義社會里,是非、善惡、美丑的界限絕對不能混淆,堅持什么、反對什么,倡導(dǎo)什么、抵制什么,都必須旗幟鮮明。我們堅持以熱愛祖國為榮、以危害祖國為恥,以服務(wù)人民為榮、以背離人民為恥,以崇尚科學(xué)為榮、以愚昧無知為恥,以辛勤勞動為榮、以好逸惡勞為恥,以團結(jié)互助為榮、以損人利己為恥,以誠實守信為榮、以見利忘義為恥,以遵紀守法為榮、以違法亂紀為恥,以艱苦奮斗為榮、以驕奢淫逸為恥。課堂小結(jié)通過本節(jié)課學(xué)習(xí),使我們認識到中國特色社會主義文化建設(shè)的中心環(huán)節(jié)是思想道德建設(shè),了解什么是社會主義思想道德,為什么要建設(shè)社會主義思想道德體系和怎樣建設(shè)社會主義思想道德體系,大力倡導(dǎo)“愛國守法、明禮誠信、團結(jié)友善、勤儉自強、敬業(yè)奉獻”的基本道德規(guī)范。我們要大力加強社會主義思想道德建設(shè),為社會主義各項事業(yè)的發(fā)展提供強大的精神動力和方向保證。
4.They were going to find someone to take part in their bet when they saw Henry walking on the street outside.[歸納]1.過去將來時的基本構(gòu)成和用法過去將來時由“would+動詞原形”構(gòu)成,主要表示從過去某一時間來看將要發(fā)生的動作(尤其用于賓語從句中),還可以表示過去的動作習(xí)慣或傾向。Jeff knew he would be tired the next day.He promised that he would not open the letter until 2 o'clock.She said that she wouldn't do that again.2.表示過去將來時的其他表達法(1)was/were going to+動詞原形:該結(jié)構(gòu)有兩個主要用法,一是表示過去的打算,二是表示在過去看來有跡象表明將要發(fā)生某事。I thought it was going to rain.(2)was/were to+動詞原形:主要表示過去按計劃或安排要做的事情。She said she was to get married next month.(3)was/were about to+動詞原形:表示在過去看來即將要發(fā)生的動作,由于本身已含有“即將”的意味,所以不再與表示具體的將來時間狀語連用。I was about to go to bed when the phone rang.(4)was/were+現(xiàn)在分詞:表示在過去看來即將發(fā)生的動作,通??捎糜谠摻Y(jié)構(gòu)中的動詞是come,go,leave,arrive,begin,start,stop,close,open,die,join,borrow,buy等瞬間動詞。Jack said he was leaving tomorrow.
一、說教材本節(jié)課選自于人教版語文必修二第二單元詩三首中的一首詩歌,它是陶淵明歸隱后的作品。寫的是田園之樂,實際表明的是作者不愿與世俗同流合污的心聲,甘愿守著自己的拙志回歸田園。學(xué)習(xí)該詩,有助于學(xué)生了解山水田園詩的特點,感受者作者不同流俗的高尚情操,同時可以培養(yǎng)學(xué)生初步的鑒賞古典詩歌的能力。
科學(xué)是人類認識世界的重要工具,閱讀科普說明文不僅可以啟迪心智,了解更多知識。而且更夠激發(fā)學(xué)生對科學(xué)的興趣。學(xué)習(xí)這些文章要注重學(xué)生科學(xué)精神的培養(yǎng),關(guān)注科學(xué)探索的過程,感受科學(xué)家在科學(xué)探索中表現(xiàn)的人格魅力。我們知道一些科學(xué)家就是因為閱讀了相關(guān)的科普文章才對某一學(xué)科產(chǎn)生興趣,從而走上成功之路的。我們在講解的時候可以跟學(xué)生列舉一些例子,讓學(xué)生認識到一篇好的科普文章的重大意義。
環(huán)節(jié)四 情感升華,感悟生活播放《愛我中華》,感受祖國的偉大,民族的團結(jié)。設(shè)計意圖:使學(xué)生感受偉大的中華民族的精神,內(nèi)心產(chǎn)生共鳴,抒發(fā)強烈的愛國熱情。教師帶領(lǐng)學(xué)生一起合唱,用歌聲結(jié)束本堂課內(nèi)容,能再次喚起學(xué)生的愛國情感,使學(xué)生認識到:維護國家統(tǒng)一和民族團結(jié)是每個公民的義務(wù)。環(huán)節(jié)五 課堂小結(jié) 鞏固知識本節(jié)課我采用線索性的板書,整個知識結(jié)構(gòu)一目了然,為了充分發(fā)揮學(xué)生在課堂的主體地位,我將課堂小結(jié)交由學(xué)生完成,請學(xué)生根據(jù)課堂學(xué)習(xí)的內(nèi)容,結(jié)合我的板書設(shè)計來進行小結(jié),以此來幫助教師在第一時間掌握學(xué)生學(xué)習(xí)信息的反饋,同時培養(yǎng)學(xué)生歸納分析能力、概括能力。本節(jié)課,我根據(jù)建構(gòu)主義理論,強調(diào)學(xué)生是學(xué)習(xí)的中心,學(xué)生是知識意義的主動建構(gòu)者,是信息加工的主體,要強調(diào)學(xué)生在課堂中的參與性、以及探究性,不僅讓他們懂得知識,更讓他們相信知識,并且將知識融入到實踐當中去,最終達到知、情、意、行的統(tǒng)一。
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點關(guān)注端點是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對實際生活中的對象進行判斷與歸類。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應(yīng)用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運算:三角函數(shù)式的求值.
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.