提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中生物必修3第一章第二節(jié)《內(nèi)環(huán)境穩(wěn)態(tài)的重要性》說課稿

  • 人教版高中語文必修1《新詞新語與流行文化》說課稿

    人教版高中語文必修1《新詞新語與流行文化》說課稿

    當(dāng)代社會(huì)生活的變化比以往任何時(shí)代都要快。語言尤其是詞匯記錄了這些發(fā)展變化,因而也涌現(xiàn)了大量的新詞新語。據(jù)統(tǒng)計(jì),近幾年每年大約要出現(xiàn)1000個(gè)左右的新詞新語,而字典、詞典的多次修訂、增補(bǔ)就反映了這種情況。但相對(duì)來說,也有一些流行語又逐漸受到冷遇,甚至退隱。為了更好的對(duì)新詞新語與流行文化作一番檢視與探究,那讓我們考察一下它們是怎么產(chǎn)生的吧?老師先給同學(xué)們列舉四種途徑:大屏幕3。同學(xué)們能再舉出以上途徑的一些例子嗎?老師列舉(4)其實(shí)不只這些,那還有哪些途徑呢?找同學(xué)說并舉例。說的非常好,請(qǐng)同學(xué)們看老師的例子,總結(jié)(5)。從新詞新語的產(chǎn)生途徑可以看出,這些鮮活得像畫一樣的新詞就是這個(gè)時(shí)代跳動(dòng)的血小板,它涉及當(dāng)代社會(huì)的重大事件、現(xiàn)象與時(shí)弊,以及人們?nèi)粘I畹母鱾€(gè)層面如人生意義、生活方式、愛情、友情、就業(yè)、消費(fèi)、時(shí)尚等,時(shí)代性強(qiáng),傳播面廣,反映著當(dāng)代社會(huì)時(shí)局與人們文化心態(tài)的變化。

  • 人教版高中地理必修1自然地理環(huán)境的差異性教案

    人教版高中地理必修1自然地理環(huán)境的差異性教案

    注:號(hào)碼代表自然帶類型【討論問題】(1)請(qǐng)將板圖中符號(hào)與你所在的自然帶“對(duì)號(hào)入座”(提問幾位同學(xué))。(2)哪些屬于溫帶森林?哪些屬于熱帶森林?(3)南半球缺少哪些自然帶?(4)氣 候類型相同而自然帶不同的是哪種氣候類型,哪些自然帶?(5)自然帶相同,氣候類型不同的是哪種自然帶,哪些氣候類型?(6)兩組同學(xué)“通道”之間所處的是什么自然帶?(答:過渡帶,說明自然帶沒有嚴(yán)格界線,整個(gè)自然界是非常和諧地過渡、相互聯(lián)系結(jié)成的有機(jī)整體)?!痉配浵衿俊陡髯匀粠Ь坝^》,看一段錄像增加感性認(rèn)識(shí)(教師可以使用自己編輯的錄像資料)?!緦W(xué)生討論】閱讀課本P98“世界陸地自然帶分布圖”了解自然 帶的基本分布情況:【學(xué)生回答】略?!窘處熆偨Y(jié)】

  • 人教版高中地理必修1自然地理環(huán)境的整體性教案

    人教版高中地理必修1自然地理環(huán)境的整體性教案

    1.生產(chǎn)功能:合成有機(jī)物的能力2.平衡功能:使自然地理要素的性質(zhì)保持穩(wěn)定的能力【教師講解】生產(chǎn)功能主要依賴于光合作用。在光合作用過程中,植物提供葉綠素,大氣提供熱量和二氧化碳,土壤及水圈、巖石圈提供水分及無機(jī)鹽。光合作用通過物質(zhì)和能量的交換,將生物、大氣、水、土壤、巖石等地理要素統(tǒng)一在一起,在一定的條件下,生產(chǎn)出有機(jī)物。由此可見,生產(chǎn)功能是自然環(huán)境的整體功能而非單個(gè)地理要素的功能。大氣本身不具有減緩二氧化碳增加的功能,但是,在自然地理環(huán)境中,通過各地理要素的相互作用,卻能消除部分新增的二氧化碳的能力,既為自然地理環(huán)境的平衡功能。請(qǐng)大家閱讀教材P94活動(dòng),利用平衡功能的原理,解釋一定范圍內(nèi)各物種的數(shù)量基本恒定這一現(xiàn)象。【學(xué)生討論回答】略。(可參考教參)【轉(zhuǎn)折】自然地理環(huán)境各要素每時(shí)每刻都在演化,如我們熟知的氣候變化、地貌變化等。各個(gè)要素的發(fā)展演化是統(tǒng)一的,一個(gè)要素的演化伴隨著其他各個(gè)要素的演化。

  • 人教版高中地理必修3地理環(huán)境對(duì)區(qū)域發(fā)展的影響教案

    人教版高中地理必修3地理環(huán)境對(duì)區(qū)域發(fā)展的影響教案

    (1)下面列出的是我國(guó)南北方傳統(tǒng)民居的差異,分析形成這些差異的自然原因:——北方民居正南正北的方位觀比南方強(qiáng);——北方民居的墻體嚴(yán)實(shí)厚重,南方民居的墻體輕薄;——從北到南,民居的屋頂坡度逐漸增大,房檐逐漸加寬,房屋進(jìn)深和高度逐漸加大。(2)下面列出的是我國(guó)南北方城市住宅摟的差異,分析導(dǎo)致這些差異的自然原因:——如果不考慮地價(jià)、建筑材料等因素,建同等面積的住房,北方的建筑成本比南方高 ;——建同樣高度的多幢樓房,北方樓房的南北間距比南方大。點(diǎn)撥:本活動(dòng)要求學(xué)生了解由于地理環(huán)境的差異造成南北方建筑物特點(diǎn)的不同,并由此認(rèn)識(shí)地理環(huán)境 差異對(duì)人們生活的影響。(1)比較而言,北方的冬季寒冷而漫長(zhǎng),南方的夏季濕熱而漫長(zhǎng)。為了在冬季充分利用太陽光照和熱量,北方民居正南正北的方位觀比南方強(qiáng)。北方民居的墻體嚴(yán)實(shí)厚重,利用在冬季保溫御寒;南方民居的墻體輕薄,利于在夏季通風(fēng)透氣。從北到南,年降水量逐漸增大,民居的屋頂坡度也逐漸增大(利于排水) ;隨著對(duì)保溫要求的降低和對(duì)通風(fēng)納涼要求的提高,民居的屋檐逐漸加寬,房屋進(jìn)深和高度逐漸加大。

  • 第二十個(gè)全國(guó)中小學(xué)生“安全教育日”國(guó)旗下講話稿

    第二十個(gè)全國(guó)中小學(xué)生“安全教育日”國(guó)旗下講話稿

    老師們、同學(xué)們,上午好!今天是第二十個(gè)全國(guó)中小學(xué)生“安全教育日”,所以,今天我講話的題目是《珍愛生命,安全第一》,教育部長(zhǎng)周濟(jì)曾講過這么一句話:“沒有安全,何談教育”,的確是這樣,沒有校園安全,哪來教育事業(yè)的發(fā)展。校園安全不但關(guān)系到每位同學(xué)能否健康成長(zhǎng),也關(guān)系到每個(gè)家庭的幸福。因此,我們必須清醒的認(rèn)識(shí)到“安全無小事”。但校園安全事故每天都在上演,校園安全問題成了永恒的話題。樓道踩踏、食物中毒、溺水身亡、交通安全、違規(guī)用電、火災(zāi)火險(xiǎn)、體育運(yùn)動(dòng)、網(wǎng)絡(luò)交友、打架斗毆、流感病毒、毒品危害等等,這些校園安全事故時(shí)刻威脅著我們青少年學(xué)生的健康成長(zhǎng)。下面我們聽一聽這些觸目驚心的安全事故。XX年12月7日湖南省湘潭育才中學(xué)發(fā)生慘重的校園踩踏事件,一名學(xué)生在下樓梯的過程中跌倒,引起擁擠踩踏,造成8人死亡,26人受傷。XX年12月2日,山東東營(yíng)某學(xué)校校車側(cè)翻事故造成3名學(xué)生死亡。XX年12月8日,安徽省淮北市同仁中學(xué)籃球場(chǎng)邊的高墻轟然坍塌,5名女同學(xué)的花季生命被永遠(yuǎn)定格在哪里。XX年4月27日,遼寧省葫蘆島市某中學(xué)6名學(xué)生校外私自游泳,溺水死亡。

  • 第二學(xué)期國(guó)旗下講話稿

    第二學(xué)期國(guó)旗下講話稿

    【文章導(dǎo)讀】講話稿有廣義和狹義之分。廣義的講話稿是人們?cè)谔囟▓?chǎng)合發(fā)表講話的文稿;狹義的講話稿即一般所說的領(lǐng)導(dǎo)講話稿,是各級(jí)領(lǐng)導(dǎo)在各種會(huì)議上發(fā)表帶有宣傳、指示、總結(jié)性質(zhì)講話的文稿。下面是小編為您整理的第二學(xué)期國(guó)旗下講話稿,供您參考和借鑒?!酒弧康诙W(xué)期國(guó)旗下講話稿  老師們、同學(xué)們:今天我國(guó)旗下講話的題目是“弘揚(yáng)雷鋒精神、做全面發(fā)展東湖人”,高中第二學(xué)期國(guó)旗下講話稿范文)。50多年來,全國(guó)各地積極開展向雷鋒學(xué)習(xí)的活動(dòng),一代又一代的青年在活動(dòng)中受到教育,茁壯成長(zhǎng);50多年來,千百萬青少年在這一號(hào)召的指引下,積極地投入到偉大民族復(fù)興和現(xiàn)代化建設(shè)的歷史洪流中,創(chuàng)造了令世界矚目的輝煌。50多年的發(fā)展和沉淀,“雷鋒”已不僅僅是一個(gè)人的名字,“雷鋒精神”更不僅僅是一個(gè)人的精神,“雷鋒”和“雷鋒精神”一道,已深深扎根到中國(guó)這片廣袤的土地中,它們已經(jīng)成為中華民族精神的一個(gè)閃亮的符號(hào)。學(xué)習(xí)雷鋒同志,弘揚(yáng)雷鋒精神,已成為中華民族持續(xù)發(fā)展的需要,時(shí)代發(fā)展的必然要求。

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版新課標(biāo)高中物理必修2探究彈性勢(shì)能的表達(dá)式教案2篇

    人教版新課標(biāo)高中物理必修2探究彈性勢(shì)能的表達(dá)式教案2篇

    “做功的過程就是能量轉(zhuǎn)化過程”,這是本章教學(xué)中的一條主線。對(duì)于一種勢(shì)能,就一定對(duì)應(yīng)于相應(yīng)的力做功。類比研究重力勢(shì)能是從分析重力做功入手的,研究彈簧的彈性勢(shì)能則應(yīng)從彈簧的彈力做功入手。然而彈簧的彈力是一個(gè)變力,如何研究變力做功是本節(jié)的一個(gè)難點(diǎn),也是重點(diǎn)。首先,要引導(dǎo)學(xué)生通過類比重力做功和重力勢(shì)能的關(guān)系得出彈簧的彈力做功和彈簧的彈性勢(shì)能的關(guān)系。其次,通過合理的猜想與假設(shè)得出彈簧的彈力做功與哪些物理量有關(guān)。最后,類比勻變速直線運(yùn)動(dòng)求位移的方法,進(jìn)行知識(shí)遷移,利用微元法的思想得到彈簧彈力做功的表達(dá)式,逐步把微分和積分的思想滲透到學(xué)生的思維中。本節(jié)課通過游戲引入課題,通過生活中拉弓射箭、撐桿跳高和彈跳蛙等玩具以及各種彈簧等實(shí)例來創(chuàng)設(shè)情景,提出問題。給學(xué)生感性認(rèn)識(shí),引起學(xué)生的好奇心;讓學(xué)生對(duì)彈簧彈力做功的影響因素進(jìn)行猜想和假設(shè),提出合理的推測(cè),激發(fā)學(xué)生的探索心理,構(gòu)思實(shí)驗(yàn),為定性探究打下基礎(chǔ)。然后,引導(dǎo)學(xué)生通過類比重力做功與重力勢(shì)能的關(guān)系得出彈簧彈性勢(shì)能與彈簧彈力做功的關(guān)系。

  • 人教版高中語文必修3《一名物理學(xué)家的教育歷程》教案

    人教版高中語文必修3《一名物理學(xué)家的教育歷程》教案

    ①闡發(fā)話題式:就是用簡(jiǎn)練的語言對(duì)所給話題材料加以概括和濃縮,并找到一個(gè)最佳切入點(diǎn)加以深層次闡述。吉林一考生的滿分作文《漫談“感情”“認(rèn)知”》的題記是:“同是對(duì)‘修墻’‘防盜’的預(yù)見,卻產(chǎn)生‘聰明’或‘被懷疑’的結(jié)果?!星椤鼓苋绱说刈笥抑J(rèn)知’,心的小舟啊,在文化的河流中求索?!边@個(gè)題記通過對(duì)材料的簡(jiǎn)單解釋,將“感情”與“認(rèn)知”二者的關(guān)系詮釋得非常明白,也點(diǎn)明了作者的態(tài)度和議論的中心。②詮釋題目式:所擬題目一般都具有深刻性特點(diǎn),運(yùn)用題記形式對(duì)題目進(jìn)行巧妙而又全面的詮釋。云南一考生的滿分作文《與你同行》的題記是:“他們一路同行,一個(gè)汲著水,一個(gè)負(fù)著火,形影相隨。在他們攜手共進(jìn)時(shí),就產(chǎn)生了智慧?!边@個(gè)題記形象而深刻地對(duì)“與你同行”這個(gè)題目進(jìn)行了解釋,言簡(jiǎn)意賅,表明了考生對(duì)感情和理智關(guān)系的認(rèn)識(shí)。

  • 人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿3篇

    人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿3篇

    (3)改造主觀世界同改造客觀世界的關(guān)系。改造客觀世界同改造主觀世界,是相互聯(lián)系、相互作用的。改造主觀世界是為了更好地改造客觀世界,人們?cè)诟脑炜陀^世界的同時(shí)也改造著自己的主觀世界。通過自覺改造主觀世界,又能提高改造客觀世界的能力。師:人們對(duì)自己的思想道德境界的追求,是永遠(yuǎn)止境的。讓我們共同努力,在踐行社會(huì)主義思想道德的過程中,不斷追求更高的目標(biāo),像無數(shù)先輩那樣,加入到為共產(chǎn)主義遠(yuǎn)大理想而奮斗的行列中吧!課堂小結(jié)通過本節(jié)課學(xué)習(xí)使我們認(rèn)識(shí)到面對(duì)現(xiàn)實(shí)生活中的思想道德沖突,加強(qiáng)知識(shí)文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標(biāo)的必要性;把握了知識(shí)文化修養(yǎng)與思想道德修養(yǎng)的含義及其相互關(guān)系;明確了我們應(yīng)該和怎樣追求更高的思想道德目標(biāo);認(rèn)識(shí)到這是一個(gè)永無止境的過程。我們要腳踏實(shí)地,從現(xiàn)在做起、從點(diǎn)滴小事做起,不斷提高知識(shí)文化修養(yǎng)和思想道德修養(yǎng),追求更高的思想道德目標(biāo)。

上一頁123...171819202122232425262728下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!