1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、教材分析人教版高中思想政治必修4生活與哲學第一單元第三課第二框題《哲學史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學習本框內(nèi)容對學生來講,將有助于他們正確認識馬克思主義,運用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強的現(xiàn)實指導意義。二、學情分析高二學生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導,激發(fā)學生學習馬克思主義哲學的興趣。三、教學目標1.馬克思主義哲學產(chǎn)生的階級基礎(chǔ)、自然科學基礎(chǔ)和理論來源,馬克思主義哲學的基本特征。2.通過對馬克思主義哲學的產(chǎn)生和基本特征的學習,培養(yǎng)學生鑒別理論是非的能力,進而運用馬克思主義哲學的基本觀點分析和解決生活實踐中的問題。3.實踐的觀點是馬克思主義哲學的首要和基本的觀點,培養(yǎng)學生在實踐中分析問題和解決問題的能力,進而培養(yǎng)學生在實踐活動中的科學探索精神和革命批判精神。
一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
(三)實踐性數(shù)學是一種工具,一種將自然、社會運動現(xiàn)象法則化、簡約化的工具。數(shù)學學習的最重要的成果就是學會建立數(shù)學模型,用以解決實際問題。因此,在這節(jié)課中,大量地創(chuàng)設(shè)條件,讓學生把課堂中所學的知識和方法應(yīng)用于生活實際之中,“學以致用”,讓學生切實感受到生活中處處有數(shù)學。如上課伊始的猜冰箱,課中觀察玩具、用品,給熊貓照相等,都采用了貼近學生生活的材料,旨在聯(lián)系生活,開闊視野,同時延伸學習,使學生能從看到的物體的某一個面,聯(lián)想到整個物體的形狀,培養(yǎng)其觀察立體實物的能力,建立初步的空間觀念,發(fā)展形象思維。本課的所有教學環(huán)節(jié)都注重借助學生生活中常見的事物為知識載體,意在讓學生感悟到“數(shù)學就在我們身邊,生活離不開數(shù)學”。二、需進一步探究的問題“觀察物體”的內(nèi)容主要是對簡單物體正面、側(cè)面、上面形狀的觀察,因此本節(jié)課選擇了大量生活中的實物讓學生觀察,旨在培養(yǎng)學生的空間觀念。
三、估算度的把握?!稑藴省吩谟嬎憬虒W方面強調(diào)的內(nèi)容之一是重視估算,培養(yǎng)估算意識。我們認為重視估算,就是對學生數(shù)感的培養(yǎng),具體體現(xiàn)在能估計運算的結(jié)果,并對結(jié)果的合理性作出解釋。本節(jié)課的設(shè)計就是讓學生在具體情境中,學會兩種估算方法,結(jié)合具體情況作出合理解釋。四、教會學生單元整理與復(fù)習的方法,使學生終身受益。我們知道授人以漁而非魚的道理。在本節(jié)課中,老師設(shè)計了引導學生學會整理與復(fù)習的方法,如:帶著問題看書,將算式分類、歸納、總結(jié)出本單元所學內(nèi)容,計算方法,注意地方,最后進行有針對性的練習。如果我們的老師從小就有意識地對學生進行學習方法的培養(yǎng),學生將終身受益。我想我們教學研討活動就是為了實現(xiàn)教育的最高境界:今天的教是為了明天的不教。
一、說教材《兩位數(shù)加一位數(shù)的進位加法》是人教版義務(wù)教育課程標準實驗教科書一年級下冊P62“兩位數(shù)加一位數(shù)的進位加法”,本課是在兩位數(shù)加一位數(shù)和整十數(shù)的基礎(chǔ)上進行教學的。在本節(jié)課中,通過生活情境圖,引入兩位數(shù)加一位數(shù)的進位加法,并使學生在解決實際問題的過程中,進一步體會加法的意義,鼓勵學生提出問題并解決問題,要讓學生在獨立思考的基礎(chǔ)上,經(jīng)歷與他人交流的過程,探索并掌握兩位數(shù)加一位數(shù)進位加法的計算方法,并能正確地計算,加強動手操作,探索計算方法,體會算法的多樣性。根據(jù)本節(jié)課在教材中的地位和作用,依據(jù)小學數(shù)學課程標準和孩子們已有的認知水平,我把本節(jié)課的教學目標定為:1、知識與技能在解決實際問題的過程中,進一步體會加法的意義,探索并掌握兩位數(shù)加一位數(shù)進位加法的計算方法。
(四)、反饋練習1.口算:看誰算得又對又快。學生在書上做第43頁的第5題,限時2分鐘。學生做題,教師計時,做后集體訂正,并指名說說自己是怎樣做75-5,90+8這兩道題的。[通過計時計算,可提高學生的自信度,通過說兩題的計算過程,加強對新知的鞏固程度。]2.做第43頁的第6題。在這里將首先運用多媒體教學課件表現(xiàn)出課本上兩人對話的場景(有老師3名,學生40名,45瓶礦泉水夠嗎?),使學生看后發(fā)表自己的意見,如果自己在此時遇到這樣的問題會怎么辦,并說說自己是怎樣想的,會用算式表達的同學,可以列出算式來。[充分利用現(xiàn)代化設(shè)備為學生的思維創(chuàng)設(shè)情境,使學生的思維盡可能地與現(xiàn)實生活相聯(lián)系,以生活實際中的問題來鍛煉學生的思維能力,并讓學生體會到生活中處處有數(shù)學。為了讓學生有不同的發(fā)展,可讓程度較好的學生把自己的思維過程抽象成數(shù)學算式。]
二、說教學目標1、結(jié)合具體情境進一步理解加減法的意義,能正確口算得數(shù)是百以內(nèi)數(shù)的兩位數(shù)加減法。2、能利用所學知識,在教師的指導下提出并解決簡單的實際問題,了解同一問題可以用不同的方法解決。3、經(jīng)歷與他人交流各自計算方法的過程,體驗解決問題策略的多樣性,感受學數(shù)學、用數(shù)學的樂趣。三、說教法、學法教法:為了使學生掌握好百以內(nèi)的兩位數(shù)加減兩位數(shù)的口算這部分知識,達到以上教學目的,突破以上教學重難點,我采用了遷移法、引導法、講解法、聯(lián)系法、自主探索法來進行教學。學法:通過本課的學習,使學生學會利用舊知構(gòu)建新知的方法、合作探究的方法,調(diào)動學生主動探索的積極性。四、說教學過程(一)創(chuàng)設(shè)情景、導入新課1、談話:同學們,大千世界無奇不有。我們所處的人類的社會是由一個個擔任不同工作的人所組成的,而和我們生活密切相關(guān)的蜜蜂也跟人類一樣,它們生活在一個蜜蜂王國里,今天我們就一起到那里了解一下蜜蜂的生活吧。
一、教材分析:《名數(shù)的改寫》是四年級下冊小數(shù)的意義和性質(zhì)的內(nèi)容。該內(nèi)容是在學生已經(jīng)學習了利用小數(shù)點位置移動引起小數(shù)的大小變化規(guī)律的基礎(chǔ)上進行教學的。本信息窗呈現(xiàn)的是一只天鵝從出生到長大體重變化的情況。圖中用文字標出了具體的變化數(shù)據(jù)。主要通過引導學生解答天鵝體重變化的問題,讓學生體會到單位不相同,必須改寫成相同的單位,展開對名數(shù)改寫知識的學習。二、教學目標根據(jù)上述對教材的分析,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我確立了本課的教學目標為:知識與技能方面:會利用移動小數(shù)點的位置來進行名數(shù)改寫。理解知識間聯(lián)系,提高學生運用所學知識解決問題的能力。過程與方法方面:利用小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律和名數(shù)改寫的基本方法,引導學生進行知識遷移,從而掌握利用小數(shù)點的位置移動進行名數(shù)改寫的方法。
1.讓學生拿出長方體摸一摸,問:你有什么感覺?摸的的面是什么形狀?師:誰來摸一摸,老師手上長方體的長方形在哪?(學生找出長方形)2.讓學生在自己的學具(長方體、正方體、圓柱體)上找圖形,并和小組里的同學說一說。3、指名說,教師把學生找到的圖形從立體圖形上分離出來,貼于黑板上,師:這些圖形是物體上的一個面,這就是我們今天要認識的圖形。(板書課題——認識平面圖形)4.讓學生說說:從什么物體上找到了什么圖形?5.師:你能想辦法把這些形狀畫到一張紙上嗎?請學生演示各自不同的方法,然后教師在黑板上沿長方體的一個面畫出長方形。師:你會畫嗎?請小朋友們用自己喜歡的辦法畫出并剪出長方形、正方形、圓和三角形各2個。
第一課時:從不同角度觀察一個物體教學內(nèi)容:教科書38頁例1、從不同角度觀察一個物體教學目標:1、知識目標:讓學生經(jīng)歷觀察的過程,認識到從不同的位置觀察物體,所看到的形狀是不同的。能辨認從正面、左面、上面觀察到的簡單物體的形狀。2、能力目標:培養(yǎng)學生從不同角度觀察,分析事物的能力。培養(yǎng)學生構(gòu)建簡單的空間想象力。教學重難點:幫助學生構(gòu)建初步的空間想象力。學情分析:學生在日常生活中已經(jīng)積累了豐富的觀察物體的感性經(jīng)驗,已經(jīng)能辨認從不同位置觀察到的簡單物體的形狀,因此可以放手讓學生自己去探究,讓學生真正地、實實在在地進行觀察和操作。教具學具:長方體、正方體、盒子等。教學設(shè)計:一、,謎語導入請同學們猜謎語:“左一片、右一片,摸得著,看不見,是什么呢?”(耳朵)為什么能看見別人的耳朵,卻看不見自己的耳朵呢?因為我們觀察的角度不一樣,那么今天我們就一起來進一步研究觀察物體(板書)
4.鞏固和擴展(Consolidation and extension) (1) 做本單元活動手冊配套練習。 (2) 翻卡片說單詞。學生兩人一組,把單詞卡片反面朝上放在桌子上,然后同時翻開兩張單詞卡(如:going, holiday),就馬上組織成一句話(如:Where are you going on the holiday?/ I’m going to Kunming this holiday.),說得快又正確者為勝。 (3) 教師播放C部分Story time的錄音或VCD,幫助學生理解故事內(nèi)容。學生再聽一遍錄音,跟讀故事里的句子,教師指導學生發(fā)音。 (4) Bright eyes. 在黑板上張貼Let’s find out的8幅圖片,Mike, Zhang Peng, Sarah, Kathy等4個人物圖片分別放在8幅圖片上,如:Mike ---take pictures---buy presents。學生仔細觀察后,請學生閉上眼睛,教師就趁學生閉眼之際交換人物位置(如把Mike放到eat noodles),然后請學生張開眼睛回答:What did Mike do just now ? 引導學生回答: Mike took pictures and bought presents. 教學參考資料庫 1.文化背景介紹: 機場標志: Airport 飛機場 Airport lounges 機場休息室Airports shuttle 機場班車 Arrivals 進港Assistance 問訊處Check in area (zone) 辦理登機區(qū)Departure airport 離港時間Departure times on reverse 返航時間 Welcome aboard 歡迎登機
教學難點:利用數(shù)的分解組成,正確地計算5以內(nèi)的減法。教學準備:小圓片、小棒、小黑板。教學過程:一、復(fù)習:1、拍手接力游戲 。2、看圖說圖意,并列式計算。3、復(fù)習5以內(nèi)數(shù)的組成。二、新授:1、(小黑板)出示畫圖:樹上有5只鳥,飛走了一只。根據(jù)這幅圖,你能提什么問題呢?2、那么你怎么列式呢?先和小組里的小朋友說一說,再指名回答,請學生上來板書列式。3、小組內(nèi)交流:“5-1”得幾?你是怎么算的?和組里的小朋友交流,每個小朋友都說自己的想法,是怎樣得出結(jié)果的。4、匯報情況:指名小老師上來教大家計算的過程(提倡算法多樣化,教師可以有意識請想法不同的學生上來說一說)5、抽象出計算過程:引導學生如果不看圖,不數(shù)手指,你會計算“5-1”得幾嗎?(引導學生用數(shù)的組成知識來計算)
學生搜集中外重要節(jié)日及部分中外名人的生日所在的月份。教師準備相關(guān)節(jié)日及部分中外名人的圖片或音像資料片。教師課前準備Let’s find out2的配圖畫好春、夏、秋、冬四個方框。錄音:Listen and number。教學過程:Warm up (熱身)活動一復(fù)習單詞教學參考時間:3分鐘(1)教師播放Let’s chant部分的歌謠,學生聽一遍后跟唱。(2)出示帶有各個月份特征的單詞卡片。學生看圖說出單詞,并一起拼讀其縮寫形式。幫助學生在有節(jié)奏的說唱中鞏固記憶單詞,為在后面活動中學生能夠熟練應(yīng)用作鋪墊?;顒佣?復(fù)習句子教學參考時間:5分鐘(1)師生同唱Let’s chant部分歌謠“When Is Your Birthday?”。(2)教師引導學生看歌謠下面的翻滾過山車的動畫,師生進行問答,如:When is the rabbit’s birthday? It’s in May. 等。教師示范后請學生進行Pair work,也可以展開競賽的形式進行“連鎖問答”。鞏固有關(guān)生日問答的語句,為Let’s find out1的活動做準備。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。