2重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):1.了解中國航天知識(shí)和掌握飛船的主要結(jié)構(gòu)。2.利用各種廢棄物制作各種宇宙飛船。教學(xué)難點(diǎn):學(xué)習(xí)利用各種廢棄物制作宇宙飛船,培養(yǎng)學(xué)生養(yǎng)成收集有關(guān)宇宙飛船的信息與資料的習(xí)慣教學(xué)活動(dòng)活動(dòng)1【導(dǎo)入】導(dǎo)入新課.師:今年11月1日5時(shí)58分10秒神舟八號(hào)的發(fā)射成功,再一次圓了中國人民的千年飛天夢(mèng)。真讓人振奮??!好,現(xiàn)在讓我們一起回到那激動(dòng)人心的時(shí)刻吧。教師播放在段有關(guān)“神州八號(hào)”載人飛船上天的影片,在播放過程中講解有關(guān)“神州八號(hào)”的發(fā)射情況。
觀點(diǎn)一:沒有無義務(wù)的權(quán)利,也沒有無權(quán)利的義務(wù);觀點(diǎn)二權(quán)利與義務(wù)是完全對(duì)等的。根據(jù)學(xué)生的回答,教師點(diǎn)撥歸納,一般來說,權(quán)利與義務(wù)是對(duì)等的,因?yàn)闆]有義務(wù)的權(quán)利只能是特權(quán),而沒有權(quán)利的義務(wù)只能是奴役,只有將權(quán)利與義務(wù)有機(jī)結(jié)合起來,才能構(gòu)成一個(gè)符合社會(huì)發(fā)展要求的公民社會(huì),在討論和思考中,使學(xué)生樹立正確的觀點(diǎn),引導(dǎo)學(xué)生多方面、多角度地辯證認(rèn)識(shí)權(quán)利與義務(wù)的關(guān)系。(3)個(gè)人利益和國家利益相結(jié)合的原則。引出汶川大地震中一些先進(jìn)人物事跡,但另外也有一些人發(fā)國難財(cái)?shù)娜耍绾谛拿奘录?,針?duì)上述材料,請(qǐng)同學(xué)們談?wù)勛约旱目捶?。引?dǎo)學(xué)生理解國家和公民個(gè)人利益在根本上是一致的,當(dāng)個(gè)人利益與國家利益發(fā)生矛盾時(shí),個(gè)人利益要服從國家利益。通過案例分析,培養(yǎng)學(xué)生獲取信息的能力,自主學(xué)習(xí)的能力以及全面看問題的能力,再結(jié)合教師的講授,給學(xué)生一種茅塞頓開的感覺。
二、教法根據(jù)教材呈現(xiàn)的內(nèi)容,我在開展教學(xué)活動(dòng)時(shí)是從以下幾個(gè)方面思考。1、出示情境圖,鼓勵(lì)學(xué)生分析情境中的數(shù)學(xué)信息和數(shù)量關(guān)系,明確所要解決的問題,然后了解要解決這個(gè)問題需要什么樣的條件,進(jìn)而列出算式。2、討論具體的計(jì)算方法。教材中呈現(xiàn)了兩種計(jì)算方法。在這個(gè)過程中,教師可以先讓學(xué)生自主進(jìn)行計(jì)算,再組織討論和交流算法之間的聯(lián)系,明白分?jǐn)?shù)混合運(yùn)算的順序。3、對(duì)問題的解決加以解釋,即航模小組有3人。三、學(xué)法通過本節(jié)教學(xué),學(xué)生學(xué)會(huì)運(yùn)用直觀的教學(xué)手段理解掌握新知識(shí),學(xué)會(huì)有順序的觀察題、認(rèn)真審題、正確計(jì)算、概括總結(jié)、檢查的學(xué)習(xí)習(xí)慣。四、教學(xué)程序(一)談話設(shè)計(jì)意圖:激發(fā)學(xué)生興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。(二)復(fù)習(xí)舊知1、復(fù)習(xí)整數(shù)混合運(yùn)算的順序。
一、說教材1、教材內(nèi)容:本節(jié)是新北師大版教材六年級(jí)數(shù)學(xué)上冊(cè)第二單元第二課的內(nèi)容。2、教材分析:本課是一節(jié)計(jì)算與解決問題相結(jié)合的課,是在學(xué)生學(xué)會(huì)分?jǐn)?shù)混合運(yùn)算的運(yùn)算順序基礎(chǔ)上學(xué)習(xí)的,是對(duì)整數(shù)乘法運(yùn)算定律的推廣,也是在學(xué)生學(xué)會(huì)簡單的“求一個(gè)數(shù)的幾分之幾是多少?”的分?jǐn)?shù)乘法問題以及簡單兩步計(jì)算問題基礎(chǔ)上,進(jìn)一步學(xué)習(xí)的較復(fù)雜“求比一個(gè)數(shù)多(或少)幾分之幾的數(shù)是多少?”的分?jǐn)?shù)乘法問題,是后續(xù)學(xué)習(xí)整、小、分?jǐn)?shù)混合運(yùn)算及其簡便運(yùn)算,學(xué)習(xí)復(fù)雜分?jǐn)?shù)應(yīng)用問題的基礎(chǔ)。3、學(xué)情分析:本課是在學(xué)習(xí)完分?jǐn)?shù)混合運(yùn)算(一)之后學(xué)習(xí),學(xué)生已經(jīng)有一定的基礎(chǔ)。4、學(xué)習(xí)目標(biāo):(1)、通過解決“成交量”的問題,呈現(xiàn)不同解題策略,理解“求比一個(gè)數(shù)多幾分之一的數(shù)是多少?”這類問題的數(shù)量關(guān)系,并學(xué)會(huì)解決方法。(2)、通過畫圖正確理解題意,分析數(shù)量關(guān)系,尤其是幫助理解“1+1/5”的含義。進(jìn)一步體會(huì)畫圖是一種分析問題、解決問題的重要策略。
教材首先呈現(xiàn)了一個(gè)實(shí)際問題,并增加了一個(gè)估算的要求,讓學(xué)生先估一估再計(jì)算。接著教材中通過線段圖幫助學(xué)生理解題意,引導(dǎo)學(xué)生思考“比八月份節(jié)約了”是什么意思?在線段圖中,隱含著題目中最基本的等量關(guān)系,然后引導(dǎo)學(xué)生根據(jù)等量關(guān)系列方程解答,最后驗(yàn)證估算的結(jié)果。在開展教學(xué)時(shí),注意下面幾個(gè)方面。一是估算意識(shí)的培養(yǎng)。結(jié)合具體情境發(fā)展學(xué)生的估算意識(shí)和能力是《新課程標(biāo)準(zhǔn)》中強(qiáng)調(diào)的,分?jǐn)?shù)中的估算要比整數(shù)、小數(shù)的估算難把握一些,教學(xué)時(shí),讓學(xué)生結(jié)合問題情境進(jìn)行估算,關(guān)鍵是讓學(xué)生體會(huì)估算要有依據(jù)。二是解決問題策略的研究。教學(xué)時(shí),可以讓師生交流畫圖,試著分析數(shù)量間的關(guān)系。根據(jù)等量關(guān)系列出方程,解決問題。接著進(jìn)行變式練習(xí),把題目中的“比八月份節(jié)約了”改寫成“比八月份增加了”,目的是讓學(xué)生進(jìn)一步利用知識(shí)解決相關(guān)數(shù)學(xué)問題,讓學(xué)生再次利用圖找出等量關(guān)系。三是注重對(duì)估算結(jié)果進(jìn)行驗(yàn)證。
1、互逆命題:在兩個(gè)命題中,如果第一個(gè)命題的條件是第二個(gè)命題的 ,而第一個(gè)命題的結(jié)論是第二個(gè)命題的 ,那么這兩個(gè)命題互逆命題,如果把其中一個(gè)命題叫做原命題,那么另一個(gè)命題叫做它的 .2、互逆定理:如果一個(gè)定理的逆命題也是 ,那么這個(gè)逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).
中班的幼兒開始愿意探究新異的事物或現(xiàn)象來滿足自己的好奇心,所以,我們的科學(xué)活動(dòng)設(shè)計(jì)要在淺顯易懂,適合中班幼兒年齡特征的同時(shí),引發(fā)幼兒對(duì)科學(xué)的初步探究能力。中班的幼兒已經(jīng)具有注意到新異事物或現(xiàn)象的,因此,我們?cè)谠O(shè)計(jì)科學(xué)活動(dòng)時(shí)要讓幼兒充分發(fā)揮想象,對(duì)磁鐵這種“新異”事物提出問題,如什么是磁鐵?什么時(shí)候看見過磁鐵?等等類似的問題,可以增強(qiáng)幼兒的探索興趣,提高幼兒的探索的積極性,有利于激發(fā)幼兒的想象力。 中班幼兒主要以具體形象為主,需要具體的活動(dòng)場景和活動(dòng)形式,所以活動(dòng)設(shè)計(jì)要提供幼兒合適的情景以提供操作思考的機(jī)會(huì),進(jìn)一步發(fā)展幼兒的自主性和主動(dòng)性。中班幼兒與小班幼兒相比,活動(dòng)時(shí)間也有所增加,因此也需要在活動(dòng)時(shí)間上給予一定的保證。
教法分析:在新課程的教學(xué)中教師要向?qū)W生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),倡導(dǎo)讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,鼓勵(lì)學(xué)生自主探索與合作交流,讓學(xué)生在實(shí)踐中體驗(yàn)、學(xué)習(xí)。因此,本節(jié)課我采用了多媒體輔助教學(xué)與學(xué)生動(dòng)手操作、觀察、討論的方式,一方面能夠直觀、生動(dòng)地反映各種圖形的特征,增加課堂的容量,吸引學(xué)生注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面也有利于突出重點(diǎn)、突破難點(diǎn),更好地提高課堂效率。學(xué)法分析:初二年級(jí)學(xué)習(xí)對(duì)新事物比較敏感,通過新課程教學(xué)的實(shí)施,學(xué)生已具有一定探索學(xué)習(xí)與合作交流的習(xí)慣。但是一下子要學(xué)生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導(dǎo)學(xué)生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動(dòng)手實(shí)驗(yàn);三要把自己的所思所想大膽地進(jìn)行交流,從而得出正確的結(jié)論,并掌握知識(shí)。
解析:因?yàn)闇p法和除法運(yùn)算中交換兩個(gè)數(shù)的位置對(duì)計(jì)算結(jié)果有影響,所以屬于組合的有2個(gè).答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因?yàn)锳_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個(gè)元素的子集共有 個(gè). 解析:滿足要求的子集中含有4個(gè)元素,由集合中元素的無序性,知其子集個(gè)數(shù)為C_5^4=5.答案:54.平面內(nèi)有12個(gè)點(diǎn),其中有4個(gè)點(diǎn)共線,此外再無任何3點(diǎn)共線,以這些點(diǎn)為頂點(diǎn),可得多少個(gè)不同的三角形?解:(方法一)我們把從共線的4個(gè)點(diǎn)中取點(diǎn)的多少作為分類的標(biāo)準(zhǔn):第1類,共線的4個(gè)點(diǎn)中有2個(gè)點(diǎn)作為三角形的頂點(diǎn),共有C_4^2·C_8^1=48(個(gè))不同的三角形;第2類,共線的4個(gè)點(diǎn)中有1個(gè)點(diǎn)作為三角形的頂點(diǎn),共有C_4^1·C_8^2=112(個(gè))不同的三角形;第3類,共線的4個(gè)點(diǎn)中沒有點(diǎn)作為三角形的頂點(diǎn),共有C_8^3=56(個(gè))不同的三角形.由分類加法計(jì)數(shù)原理,不同的三角形共有48+112+56=216(個(gè)).(方法二 間接法)C_12^3-C_4^3=220-4=216(個(gè)).
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個(gè)不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個(gè)不同元素中任選4個(gè)元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個(gè)?能被5整除的有多少個(gè)?(2)這些四位數(shù)中大于6 500的有多少個(gè)?解:(1)偶數(shù)的個(gè)位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個(gè));能被5整除的數(shù)個(gè)位必須是5,故有A_6^3=120(個(gè)).(2)最高位上是7時(shí)大于6 500,有A_6^3種,最高位上是6時(shí),百位上只能是7或5,故有2×A_5^2種.由分類加法計(jì)數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個(gè)).
冪函數(shù)是在繼一次函數(shù)、反比例函數(shù)、二次函數(shù)之后,又學(xué)習(xí)了單調(diào)性、最值、奇偶性的基礎(chǔ)上,借助實(shí)例,總結(jié)出冪函數(shù)的概念,再借助圖像研究冪函數(shù)的性質(zhì).課程目標(biāo)1、理解冪函數(shù)的概念,會(huì)畫冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結(jié)合這幾個(gè)冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì);3、通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識(shí)圖能力.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)冪函數(shù);2.邏輯推理:常見冪函數(shù)的性質(zhì);3.數(shù)學(xué)運(yùn)算:利用冪函數(shù)的概念求參數(shù);4.數(shù)據(jù)分析:比較冪函數(shù)大??;5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用冪函數(shù)性質(zhì)、圖像特點(diǎn)解決實(shí)際問題。重點(diǎn):常見冪函數(shù)的概念、圖象和性質(zhì);難點(diǎn):冪函數(shù)的單調(diào)性及比較兩個(gè)冪值的大?。?/p>
探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對(duì)稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對(duì)稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對(duì)稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請(qǐng)同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對(duì)稱的三個(gè)點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對(duì)稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對(duì)稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對(duì)稱點(diǎn)P3(-x, y)
學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會(huì)判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對(duì)角的定義是:射線OA繞端點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)一周回到起始位置,在這個(gè)過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對(duì)稱變換,充分體現(xiàn)對(duì)稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會(huì) 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號(hào)看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。
知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國人口變動(dòng)狀況,我國每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個(gè)體稱為樣本,樣本中包含的個(gè)體數(shù)稱為樣本量。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實(shí)際問題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示