課前活動:分成四組,對南京三個住房地段進(jìn)行調(diào)查,新街口夫子廟、板倉、仙林,對住房居民進(jìn)行問卷調(diào)查,自行設(shè)計調(diào)查問卷,分析該地段的房價要求,居民的要求,居民為何要在該地段購買住房,基礎(chǔ)設(shè)施設(shè)置等等其它與居民購房有關(guān)的因素?!粼O(shè)計意圖:利用課前小組探究形式對所學(xué)問題進(jìn)行相關(guān)調(diào)查,不僅讓學(xué)生掌握知識了解知識來源于社會還能培養(yǎng)學(xué)生深入生活交際表達(dá)能力以及合作探究能力;3.問題設(shè)計同學(xué)們,不知道你們在調(diào)查過程中是否發(fā)現(xiàn)一個問題,郊區(qū)的房子,特別是別墅,都是些高檔居所,許多有錢人的居住場所,那為什么會這樣呢?伴隨著城市化進(jìn)程中居民都往城里擠,為什么還會有許多有錢人往郊區(qū)搬呢?這就是我們今天要研究的第二個問題:逆城市化?!粼O(shè)計意圖:承轉(zhuǎn)過渡知識,從購房選擇因素的學(xué)習(xí)過渡到郊區(qū)化的學(xué)習(xí),同時培養(yǎng)學(xué)生發(fā)現(xiàn)問題的能力,給學(xué)生以啟迪。
1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時,所需進(jìn)化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進(jìn)價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
四、說教學(xué)過程:1、導(dǎo)入新課:以視頻形式導(dǎo)入新課,說明環(huán)境問題產(chǎn)生原因,引出人地關(guān)系的重要性2、新課講授:學(xué)習(xí)主題一:過去——人地關(guān)系的歷史回顧以動畫形式展現(xiàn)人地關(guān)系思想的發(fā)展,激發(fā)學(xué)生學(xué)習(xí)本專題的興趣,歸納人與自然關(guān)系的演變過程。學(xué)習(xí)主題二:現(xiàn)狀——直面環(huán)境問題以人類與環(huán)境關(guān)系模式圖說明環(huán)境問題產(chǎn)生的原因,人地關(guān)系實質(zhì);以因果聯(lián)系框圖培養(yǎng)學(xué)生判讀方法,了解人口、資源與環(huán)境三者之間的關(guān)系;通過閱讀課文,了解環(huán)境問題的類型及其空間差異的表現(xiàn);以圖表了解不同國家和地區(qū)環(huán)境問題在空間軸上的表現(xiàn);以《京都議定書》為引子說明保護環(huán)境是全人類的共同使命學(xué)習(xí)主題三:未來——可持續(xù)發(fā)展展示“可持續(xù)發(fā)展示意圖”理解可持續(xù)發(fā)展內(nèi)涵、原則
【教學(xué)目標(biāo)】知識與技能:理解環(huán)境承載力與環(huán)境人口容量的含義、兩者的關(guān)系以及環(huán)境人口容量的影響因素;理解人口合理容量的含義,影響因素并掌握保持人口合理容量的做法;結(jié)合中國國情提出適合中國保持合理人口容量的措施過程與方法:通過問題探究及案例分析理解環(huán)境承載力與環(huán)境人口容量的關(guān)系及影響因素;通過問題探討掌握保持人口合理容量的措施。情感態(tài)度與價值觀:樹立并強化學(xué)生的可持續(xù)發(fā)展觀念,科學(xué)發(fā)展觀。激發(fā)學(xué)生愛國情感更多地關(guān)注國家國情,樹立主人翁意識保護地球強大祖國。【教學(xué)重點】環(huán)境人口容量的內(nèi)涵以及影響因素人口合理容量的影響因素以及措施【教學(xué)難點】環(huán)境人口容量的內(nèi)涵以及影響因素人口合理容量的影響因素以及措施二、說教法【教學(xué)方法】案例分析、問題探究、歸納總結(jié)
學(xué)生思考回答后歸納:隨著征服地區(qū)的擴大,出現(xiàn)了許多新問題,新矛盾,原有的公民法已經(jīng)無法適應(yīng)這些新變化(質(zhì)疑)。公民法適用范圍限于羅馬公民,用來調(diào)整他們之間的關(guān)系,羅馬公民受到法律保護,并享受法律賦予的權(quán)利。在擴張中納入到疆域中的許多外邦人不能受到法律的保護,在這種背景下,公民法發(fā)展成萬民法。萬民法的出現(xiàn),一方面由于公民法的狹隘性,另一方面伴隨對外戰(zhàn)爭的勝利,奴隸制在羅馬得到快速發(fā)展。為了更加有效地保護奴隸主的私人利益,迫切需要建立和完善法律制度來維護統(tǒng)治階級的利益不受侵犯。問題探究:萬民法的制定產(chǎn)生哪些作用?學(xué)生思考回答后總結(jié):萬民法取代公民法,協(xié)調(diào)了羅馬人和外邦人之間的關(guān)系及外邦人相互之間的關(guān)系,對于在龐大帝國內(nèi)微細(xì),協(xié)調(diào)各地區(qū)的民族關(guān)系、社會矛盾也祈禱重要作用。萬民法使法律具有了更大的適用范圍,也成為鞏固羅馬統(tǒng)治的重要工具。
3、馬克思主義的三大思想來源之一——空想社會主義理論,教師可以采用多媒體技術(shù)、投放幻燈片、人物圖片等資料進(jìn)行處理。這樣既能增強課堂的趣味性,激發(fā)學(xué)生的興趣,也容易讓學(xué)生理解什么是“空想社會主義”。可以分別投放圣西門的實業(yè)制度、傅立葉的“法朗吉”和歐文的“新和諧公社”等資料加深學(xué)生的理解。為了充分發(fā)揮學(xué)生的學(xué)習(xí)主體性地位,還可以利用教材中“學(xué)習(xí)思考”的問題設(shè)計:為什么說圣西門等思想家提出的設(shè)想是空想的?讓學(xué)生在教師提供的材料中探究答案。至于馬克思主義的另兩大思想來源:德意志古典哲學(xué)、英國古典政治經(jīng)濟學(xué)可以簡單處理。而馬克思、恩格斯為無產(chǎn)階級革命事業(yè)奮斗的事跡以及馬恩兩人的友誼是可以稍加擴長的部分,教師可事先布置學(xué)生任務(wù),讓學(xué)生通過網(wǎng)絡(luò)或者書籍去查找相關(guān)知識,也或者由教師在課堂上補充相關(guān)資料,調(diào)節(jié)課堂氣氛。
四、說教法應(yīng)該充分利用歷史學(xué)科蘊含豐富圖片、史料資料的特點,采用多媒體教學(xué)手段,創(chuàng)設(shè)含有真實事件或真實問題的情境,讓學(xué)生在探究事件或解決問題的過程中,自主地理解知識,使教學(xué)過程成為一個動態(tài)的、有機的整體。使學(xué)習(xí)過程成為“感知-理解-運用”的過程,更是掌握方法、積累經(jīng)驗、發(fā)展能力、生成情感的過程。五、說教學(xué)過程1.新課導(dǎo)入帶領(lǐng)同學(xué)們回顧一下第2、3課學(xué)習(xí)的內(nèi)容,因為講的是專制主義中央集權(quán)的建立,講的是專制主義中央集權(quán)的發(fā)展,對這兩節(jié)課內(nèi)容的復(fù)習(xí)將專制主義中央集權(quán)的發(fā)發(fā)展脈絡(luò)完整的呈現(xiàn)在學(xué)生面前。接下來就通過對胡惟庸案的講解導(dǎo)入本節(jié)課的內(nèi)容。2.問題探究,突破重點、難點導(dǎo)入新課后,通過多媒體課件給學(xué)生們展示一段朱元璋大肆殺戮功臣的資料,提示學(xué)生大肆殺戮功臣是朱元璋加強中央集權(quán)的措施之一,接著引導(dǎo)學(xué)生看課本提問他們朱元璋為了加強中央集權(quán)還采取了哪些措施,從而得出明代加強中央集權(quán)的措施。
【教學(xué)方法】教法:講授法、探究教學(xué)法、講述法、談話法、比較法學(xué)法:接受性學(xué)習(xí)法、探究性學(xué)習(xí)法、合作學(xué)習(xí)法、引導(dǎo)學(xué)生自主學(xué)習(xí);通過閱讀史料,分析歷史問題;【教學(xué)重點】掌握中國古代手工業(yè)發(fā)展的基本史實:古代手工業(yè)的重要成就;官營手工業(yè)產(chǎn)品精美,品種繁多,享譽世界;民營手工業(yè)艱難發(fā)展,后來居上;家庭手工業(yè)是中國古代社會穩(wěn)定的重要因素?!窘虒W(xué)難點】中國古代手工業(yè)發(fā)展的特征?!窘虒W(xué)媒體】多媒體、圖片、視頻【課型】綜合課【導(dǎo)入新課】在05.7.13日倫敦佳士德的一場名為“中國瓷器、手工藝品及外貿(mào)產(chǎn)品的拍賣會上,一只繪有“鬼谷下山”圖的元代青花瓷罐,被一美國古董商以1656萬英鎊也就是約2.45億人民幣的價格投得,為什么我們古代的手工業(yè)精品在今天如此受人青睞呢?這些價值連城的青銅器、瓷器是什么時候就產(chǎn)生了的,經(jīng)歷了一個怎樣的發(fā)展歷程?今天我們就來解開這些謎底。下面,我們一起學(xué)習(xí)第2課《古代手工業(yè)的進(jìn)步》。