一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點(diǎn)C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點(diǎn)時,直線方程為y=-34x.②直線不過原點(diǎn)時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
2.辯證的否定(1)辯證的否定是事物的自我否定。事物內(nèi)部存在著肯定方面和否定方面,它們既對立又統(tǒng)一。最初,肯定方面處于支配地位,否定方面處于被支配地位。在這種情況下,事物就被肯定著。但是,在矛盾雙方的斗爭中,否定方面總會由弱變強(qiáng)。一旦否定方面由被支配地位上升為支配地位,事物就轉(zhuǎn)化到了自己的對立面,實(shí)現(xiàn)了對事物的否定。事物最終之所以被否定,根源在于事物的內(nèi)部,是事物內(nèi)部的否定因素戰(zhàn)勝了肯定因素。因此,事物的否定是自我否定。(2)辯證的否定是事物發(fā)展的環(huán)節(jié)和聯(lián)系的環(huán)節(jié)。所謂發(fā)展,是指新事物的產(chǎn)生和舊事物的滅亡。而實(shí)現(xiàn)這一過程必須要對舊事物進(jìn)行否定,否定實(shí)現(xiàn)了事物由舊質(zhì)向新質(zhì)的飛躍。新事物在否定舊事物時,并不是把舊事物全盤拋棄,一筆勾銷。舊事物是新事物的母體,新事物從舊事物那里脫胎而來,新事物是在批判地繼承舊事物中的一切積極的有生命力的因素的基礎(chǔ)上發(fā)展起來的。這樣,在新舊事物之間就存在著必然的聯(lián)系。
3.社會實(shí)踐對文化創(chuàng)新的決定作用社會實(shí)踐對文化創(chuàng)新具有兩個方面的重要作用:(1)社會實(shí)踐是文化創(chuàng)新的源泉實(shí)踐,作為人們改造客觀世界的活動,是一種有目的、有意識的社會性活動。人類在改造自然和社會的實(shí)踐中,創(chuàng)造出自己特有的文化。離開了社會實(shí)踐;文化就會成為無源之水、無本之木,人們不可能從事任何有價值的文化創(chuàng)造?!蟊菊n小結(jié):1.關(guān)于本課邏輯結(jié)構(gòu)的宏觀把握:文化創(chuàng)新的源泉和作用這一問題,教材分三個層次展開論證:一是不盡的源泉,不竭的動力;二是巨大的作用,深刻的意義;三是呼喚文化創(chuàng)新的時代。教材運(yùn)用辯證方法從文化創(chuàng)新的源泉和作用展開論述。即社會實(shí)踐是文化創(chuàng)新的源泉,文化創(chuàng)新又推動社會實(shí)踐的發(fā)展和促進(jìn)民族文化的繁榮。教材關(guān)于文化創(chuàng)新的途徑問題,從三個層次展開講述:第一個層次是“繼承傳統(tǒng),推陳出新”;第二個層次是“面向世界,博采眾長”;第三個層次是“堅持正確方向,克服錯誤傾向”。
在數(shù)學(xué)上,0這個數(shù)是解決記數(shù)和進(jìn)位問題而引進(jìn)的概念,由于它不能表示實(shí)在的東西,很長時間人們不把它看作是一個數(shù)。認(rèn)為0是無,是對有的否定。從唯物辯證法的觀點(diǎn)看,這種否定不是形而上學(xué)的簡單否定,而是具有豐富內(nèi)容的辨證否定。辨證的否定是發(fā)展的環(huán)節(jié)。0是從無到有的必經(jīng)之路,是連接無和有的橋梁。0又是正數(shù)和負(fù)數(shù)之間的界限,它既否定了任何正數(shù),也否定了任何負(fù)數(shù),是唯一的中性數(shù)。但它又是聯(lián)結(jié)正數(shù)和負(fù)數(shù)的中間環(huán)節(jié)。沒有0,負(fù)數(shù)就過渡不到正數(shù)去,正數(shù)也休想發(fā)展到負(fù)數(shù)來。數(shù)學(xué)中的0是對任何定量的否定。如果沒有這一否定,任何量的發(fā)展都無從談起。這個否定不是一筆勾銷,而是揚(yáng)棄。因?yàn)樗朔巳魏味康挠邢扌?,成為其發(fā)展的環(huán)節(jié)。在現(xiàn)實(shí)生活中,0作為辨證的否定,也體現(xiàn)出聯(lián)系和發(fā)展的性質(zhì)。如0度不是沒有溫度,而是非常確定的溫度。
4.They were going to find someone to take part in their bet when they saw Henry walking on the street outside.[歸納]1.過去將來時的基本構(gòu)成和用法過去將來時由“would+動詞原形”構(gòu)成,主要表示從過去某一時間來看將要發(fā)生的動作(尤其用于賓語從句中),還可以表示過去的動作習(xí)慣或傾向。Jeff knew he would be tired the next day.He promised that he would not open the letter until 2 o'clock.She said that she wouldn't do that again.2.表示過去將來時的其他表達(dá)法(1)was/were going to+動詞原形:該結(jié)構(gòu)有兩個主要用法,一是表示過去的打算,二是表示在過去看來有跡象表明將要發(fā)生某事。I thought it was going to rain.(2)was/were to+動詞原形:主要表示過去按計劃或安排要做的事情。She said she was to get married next month.(3)was/were about to+動詞原形:表示在過去看來即將要發(fā)生的動作,由于本身已含有“即將”的意味,所以不再與表示具體的將來時間狀語連用。I was about to go to bed when the phone rang.(4)was/were+現(xiàn)在分詞:表示在過去看來即將發(fā)生的動作,通??捎糜谠摻Y(jié)構(gòu)中的動詞是come,go,leave,arrive,begin,start,stop,close,open,die,join,borrow,buy等瞬間動詞。Jack said he was leaving tomorrow.
二、教學(xué)方法:模塊圖分析、討論、實(shí)驗(yàn)。 三、教學(xué)準(zhǔn)備:地球儀若干個、咸水(鹽水)、淡水各1杯、盆栽綠葉草本植物4盆?! ∷摹⒒顒舆^程: 活動一 談話:了解水分布情況 (一)導(dǎo)入:小朋友, 你們在什么地方看到過水, 水是取之不盡, 用之不完的嗎? (二)分組觀察地球儀, 哪些地方有水。通過觀察地球儀, 初步了解地球水資源的現(xiàn)狀, 分清淡水、咸水, 明白淡水資源的珍貴, 初步形成節(jié)約用水意識, 愛護(hù)珍惜水資源?;顒佣?了解水的作用 哪些地方有水? 水有哪些用處? 通過快速聯(lián)想, 懂得淡水對人類以及有生命體的重要意義?! ?一)快速聯(lián)想:1.哪里有水?(河、湖、井) 2.水有哪些用處?(飲用、灌溉、養(yǎng)殖)
[活動準(zhǔn)備] 小螞蟻若干、放大鏡、紙盒、白紙、彩色筆。 ?。刍顒舆^程] 一、看一看。 童話劇情景表演《沒有觸角的小螞蟻》 教師帶幼兒上前扶起正在哭的小螞蟻:“小螞蟻,你怎么了?” 小螞蟻哭著說:“我找不到回家的路了。我出來找吃的,怎么也找不到,走路也弄不清方向,我又累又餓,還撞了一身的傷。我想回去,可繞來繞去總找不到家?!薄 √骄康膯栴}:螞蟻的觸角有什么作用? 二、幼兒討論。(1)沒有觸角就不漂亮了。(2)沒有觸角就找不到家了。
活動目標(biāo):1、通過交流展示各種工具,初步感受工具的種類很多。2、在觀察操作嘗試中感知工具的作用很大,發(fā)展綜合能力。3、能積極參與活動,在活動中體驗(yàn)觀察和探索的樂趣。 活動準(zhǔn)備:1、課前幼兒收集各種工具。老師和幼兒到室外尋找特殊的工具。2、卷筆刀、削蘋果機(jī),刨子,開瓶器。以及相對應(yīng)的輔助用品。 活動過程:一、嘗試操作使用工具1、師:“前幾天老師和大家一起收集了各種各樣的工具,今天讓我們就來試試這些工具,看看它們有什么用。” (幼兒分別操作工具,提醒幼兒注意安全)
當(dāng)A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
問題1. 用一個大寫的英文字母或一個阿拉伯?dāng)?shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?因?yàn)橛⑽淖帜腹灿?6個,阿拉伯?dāng)?shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.問題2.你能說說這個問題的特征嗎?上述計數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;(2)分別計算各類號碼的個數(shù);(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項專業(yè),如表,
2、初步培養(yǎng)觀察力和動手能力,萌發(fā)對科學(xué)活動的興趣?! ?3、養(yǎng)成自己整理鞋子的良好習(xí)慣?! ?重點(diǎn):按鞋子的大小、顏色、款式等特點(diǎn)進(jìn)行配對?! ?難點(diǎn):尋找鞋底的秘密,特別是形狀:兩頭大中間向里凹,但兩只鞋子的朝向是相反的?!? 二、活動準(zhǔn)備: 1、與幼兒人數(shù)相近的大小、顏色、款式各異的鞋子散落放在鞋架上,用布先遮起來,人手一張白紙?! ?2 、歡快的音樂一段。 3、半圓形的座位安排,中間留有空地,便于活動?! ?三、活動過程 (一)奇怪的鞋子 1、教師以故事的形式引出:娃娃家里的寶寶呀,特別愛漂亮,她每天都要換一雙新鞋子,所以她的鞋子特別多,最后,連她自己都分不清哪兩只是一雙了,有一天他穿了一雙很特別的鞋子,一只是大的紅鞋子,一只是小一點(diǎn)兒的花鞋子(教師邊講邊出示兩只鞋子),可是這一天,她非常不開心,你們知道她為什么不開心嗎?(幼兒猜測,引導(dǎo)幼兒發(fā)現(xiàn)兩只鞋子的不同) 2、教師小結(jié):兩只大小不同、形狀不同、顏色也不一樣的鞋子不是一雙,所以穿的人當(dāng)然就不舒服了。 (二)我的鞋子 1、師:那我們穿的鞋子是怎樣的,它有什么特別的地方呢? 2、引導(dǎo)幼兒觀察、比較自己腳上的鞋子,鼓勵幼兒大膽地說說自己鞋子的特別之處。(著重從鞋子的外型、顏色、大小等特點(diǎn)來觀察) 3、師:我們穿的鞋子的大小相同,顏色一樣,款式也一模一樣。除了這些秘密外,它還有什么特別的地方呢?
把自然物改造成人造物 1.提問:請小組展示作品,并請別的同學(xué)推想這件作品是怎樣被改造出來的?我們改造后的樹葉是什么樣子的?而改造前的樹葉又是什么樣子的?(教師引導(dǎo)學(xué)生思考并說出自然物變成人造物的過程,采用倒推的方式,結(jié)合現(xiàn)實(shí)中的人造物,去推想制成它的原材料,以及這些原材料在自然界中本來的樣子。) 2.提問:生活中還有哪些物品,由自然物被制造成了人造物。(如:演示經(jīng)過加工變成了石碑或石雕;木頭經(jīng)過加工變成了木槌;獸皮經(jīng)過加工變成了皮衣等等)