第三,說(shuō)教學(xué)重點(diǎn)和難點(diǎn)。根據(jù)課程標(biāo)準(zhǔn)的具體要求、學(xué)生實(shí)際和社會(huì)實(shí)際以及教材的邏輯結(jié)構(gòu)和教學(xué)體系,我認(rèn)為本課的重難點(diǎn)是以下幾個(gè)方面。教學(xué)重點(diǎn):1.理解王昭君的形象2.深入理解杜甫在詩(shī)中的情感教學(xué)難點(diǎn):理解寓意,把握主旨。第四,說(shuō)教法與學(xué)法。教法:根據(jù)課文特點(diǎn)和學(xué)生實(shí)際情況,以誦讀法(示范朗讀、學(xué)生齊讀)、問(wèn)題探究法、點(diǎn)撥法、討論分析法進(jìn)行教學(xué)。首先激發(fā)學(xué)生學(xué)習(xí)本文的興趣;然后引導(dǎo)學(xué)生反復(fù)吟哦誦讀,在讀的過(guò)程中質(zhì)疑、思考、品析、鑒賞;最后在教師適當(dāng)?shù)狞c(diǎn)撥下,在集體的熱烈討論中,理解作者的感情,得到新的認(rèn)識(shí)。(解說(shuō):使學(xué)生在教師的主導(dǎo)下圍繞中心議題發(fā)表各自的意見,相互交流,相互啟發(fā),相互爭(zhēng)議,激發(fā)他們主動(dòng)去獲取知識(shí),培養(yǎng)健康情感。)
環(huán)節(jié)四 課堂小結(jié) 鞏固知識(shí) 本節(jié)課我采用線索性的板書,整個(gè)知識(shí)結(jié)構(gòu)一目了然,為了充分發(fā)揮學(xué)生在課堂的主體地位,我將課堂小結(jié)交由學(xué)生完成,請(qǐng)學(xué)生根據(jù)課堂學(xué)習(xí)的內(nèi)容,結(jié)合我的板書設(shè)計(jì)來(lái)進(jìn)行小結(jié),以此來(lái)幫助教師在第一時(shí)間掌握學(xué)生學(xué)習(xí)信息的反饋,同時(shí)培養(yǎng)學(xué)生歸納分析能力、概括能力。環(huán)節(jié)五 情景回歸,情感升華我的實(shí)習(xí)指導(dǎo)老師告訴過(guò)我們,政治這一門學(xué)科要從生活中來(lái)到生活去,所以在課堂的最后布置課外作業(yè),以此培養(yǎng)學(xué)生對(duì)理論的實(shí)際運(yùn)用能力,同時(shí)檢驗(yàn)他們對(duì)知識(shí)的真正掌握情況,以此達(dá)到情感的升華,本節(jié)課,我根據(jù)建構(gòu)主義理論,強(qiáng)調(diào)學(xué)生是學(xué)習(xí)的中心,學(xué)生是知識(shí)意義的主動(dòng)建構(gòu)者,是信息加工的主體,要強(qiáng)調(diào)學(xué)生在課堂中的參與性、以及探究性,不僅讓他們懂得知識(shí),更讓他們相信知識(shí),并且將知識(shí)融入到實(shí)踐當(dāng)中去,最終達(dá)到知、情、意、行的統(tǒng)一。
2、文化反作用經(jīng)濟(jì)政治師:經(jīng)濟(jì)政治決定文化,那么,文化不是被動(dòng)消極的呢?生:思考回答:文化反作用經(jīng)濟(jì)政治,不同的文化對(duì)經(jīng)濟(jì)政治的影響不同。師:文化反作用經(jīng)濟(jì)政治,對(duì)社會(huì)發(fā)展有重要影響。文化反作用表現(xiàn)在,文化可以為經(jīng)濟(jì)政治的發(fā)展,對(duì)社會(huì)的發(fā)展,提供方向保證、智力支持和精神動(dòng)力。(1)文化反作用的體現(xiàn)。師:現(xiàn)代民主國(guó)家中,世界民主的先驅(qū)是英國(guó),但英國(guó)卻有國(guó)王,亞洲民主的先驅(qū)是日本,但日本卻有天皇,其一個(gè)重要原因是文化的影響。這說(shuō)明什么?生:思考發(fā)言……師:不同民族的文化,影響不同民族和國(guó)家的歷史和發(fā)展道路。師:中東地區(qū)一直以來(lái)都是世界熱點(diǎn)地區(qū),如巴以沖突、伊拉克戰(zhàn)爭(zhēng)、阿富汗戰(zhàn)爭(zhēng)、基地組織等,其一個(gè)重要原因是宗教文化的沖突。這說(shuō)明什么?生:思考發(fā)言……師:不同文化的沖突,影響社會(huì)的和諧安定和世界的和平安寧。
2、互聯(lián)網(wǎng)的功用:(1)功用:提供文件傳輸、電子信箱、聊天等服務(wù),在社會(huì)各個(gè)領(lǐng)域發(fā)揮了巨大的作用,標(biāo)志著信息化社會(huì)的出現(xiàn)。(2)特點(diǎn):網(wǎng)絡(luò)媒體作為一種新的傳播媒體,具有界面直觀、音色兼?zhèn)?、鏈接靈活和高速傳輸?shù)奶攸c(diǎn)。3、互聯(lián)網(wǎng)的影響:教師提問(wèn),學(xué)生思考回答,教師總結(jié) (1)信息經(jīng)濟(jì)在世界各地全面發(fā)展,加快了經(jīng)濟(jì)全球化的步伐;(2)傳統(tǒng)產(chǎn)業(yè)也借助互聯(lián)網(wǎng)提高管理水平,并通過(guò)全球營(yíng)銷和采購(gòu)擴(kuò)大市場(chǎng);(3)在互聯(lián)網(wǎng)時(shí)代,人們可以在家里完成很多工作,提高了工作效率,增加了樂(lè)趣;(4)人們的社會(huì)交往方式也發(fā)生著改變。(5)也帶來(lái)一些負(fù)面影響?!竞献魈骄俊?:青少年如何對(duì)待網(wǎng)絡(luò):互聯(lián)網(wǎng)在給社會(huì)帶來(lái)巨大效能的同時(shí),也帶來(lái)了巨大的挑戰(zhàn)。青少年應(yīng)該提高自身的道德素養(yǎng),樹立正確的網(wǎng)絡(luò)觀,讓網(wǎng)絡(luò)發(fā)揮出應(yīng)有的作用。
一、教材地位《音樂(lè)與影視藝術(shù)》是人教版高中歷史必修(III)第八專題中的第三節(jié)內(nèi)容。音樂(lè)、影視藝術(shù)屬于意識(shí)形態(tài)范疇,是當(dāng)時(shí)政治、經(jīng)濟(jì)的反映,是社會(huì)進(jìn)步的產(chǎn)物。19世紀(jì)以來(lái)的音樂(lè)與影視藝術(shù)糅合了近代科學(xué)技術(shù)的元素,直接引領(lǐng)著文明發(fā)展趨勢(shì)和社會(huì)風(fēng)尚,滿足人們不同層次的審美需要和精神追求。音樂(lè)、影視藝術(shù)在人類日常生活中無(wú)處不在,已經(jīng)成為人們?nèi)粘I钪械闹匾M成部分,所以具有重要地位。本課分三個(gè)部分介紹了19世紀(jì)和20世紀(jì)音樂(lè)的發(fā)展與變化以及影視藝術(shù)的產(chǎn)生發(fā)展。下面我就談?wù)剬?duì)這節(jié)課的教學(xué)思路。二、教材分析1、課標(biāo)要求課標(biāo)的要求是:列舉19世紀(jì)以來(lái)有代表性的音樂(lè)作品,理解這些音樂(lè)作品的時(shí)代性和民族性。了解影視藝術(shù)產(chǎn)生與發(fā)展的歷程,認(rèn)識(shí)其對(duì)社會(huì)生活的影響。2、教學(xué)目標(biāo)根據(jù)新課標(biāo)、教材內(nèi)容、學(xué)生實(shí)際,確定教學(xué)目標(biāo)如下:(1)知識(shí)與能力:①列舉19世紀(jì)以來(lái)有代表性的音樂(lè)作品,理解這些音樂(lè)作品的時(shí)代性和民族性。
4.They were going to find someone to take part in their bet when they saw Henry walking on the street outside.[歸納]1.過(guò)去將來(lái)時(shí)的基本構(gòu)成和用法過(guò)去將來(lái)時(shí)由“would+動(dòng)詞原形”構(gòu)成,主要表示從過(guò)去某一時(shí)間來(lái)看將要發(fā)生的動(dòng)作(尤其用于賓語(yǔ)從句中),還可以表示過(guò)去的動(dòng)作習(xí)慣或傾向。Jeff knew he would be tired the next day.He promised that he would not open the letter until 2 o'clock.She said that she wouldn't do that again.2.表示過(guò)去將來(lái)時(shí)的其他表達(dá)法(1)was/were going to+動(dòng)詞原形:該結(jié)構(gòu)有兩個(gè)主要用法,一是表示過(guò)去的打算,二是表示在過(guò)去看來(lái)有跡象表明將要發(fā)生某事。I thought it was going to rain.(2)was/were to+動(dòng)詞原形:主要表示過(guò)去按計(jì)劃或安排要做的事情。She said she was to get married next month.(3)was/were about to+動(dòng)詞原形:表示在過(guò)去看來(lái)即將要發(fā)生的動(dòng)作,由于本身已含有“即將”的意味,所以不再與表示具體的將來(lái)時(shí)間狀語(yǔ)連用。I was about to go to bed when the phone rang.(4)was/were+現(xiàn)在分詞:表示在過(guò)去看來(lái)即將發(fā)生的動(dòng)作,通??捎糜谠摻Y(jié)構(gòu)中的動(dòng)詞是come,go,leave,arrive,begin,start,stop,close,open,die,join,borrow,buy等瞬間動(dòng)詞。Jack said he was leaving tomorrow.
一、說(shuō)教材本節(jié)課選自于人教版語(yǔ)文必修二第二單元詩(shī)三首中的一首詩(shī)歌,它是陶淵明歸隱后的作品。寫的是田園之樂(lè),實(shí)際表明的是作者不愿與世俗同流合污的心聲,甘愿守著自己的拙志回歸田園。學(xué)習(xí)該詩(shī),有助于學(xué)生了解山水田園詩(shī)的特點(diǎn),感受者作者不同流俗的高尚情操,同時(shí)可以培養(yǎng)學(xué)生初步的鑒賞古典詩(shī)歌的能力。
科學(xué)是人類認(rèn)識(shí)世界的重要工具,閱讀科普說(shuō)明文不僅可以啟迪心智,了解更多知識(shí)。而且更夠激發(fā)學(xué)生對(duì)科學(xué)的興趣。學(xué)習(xí)這些文章要注重學(xué)生科學(xué)精神的培養(yǎng),關(guān)注科學(xué)探索的過(guò)程,感受科學(xué)家在科學(xué)探索中表現(xiàn)的人格魅力。我們知道一些科學(xué)家就是因?yàn)殚喿x了相關(guān)的科普文章才對(duì)某一學(xué)科產(chǎn)生興趣,從而走上成功之路的。我們?cè)谥v解的時(shí)候可以跟學(xué)生列舉一些例子,讓學(xué)生認(rèn)識(shí)到一篇好的科普文章的重大意義。
(二)說(shuō)學(xué)法指導(dǎo)把“學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過(guò)程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機(jī)會(huì),充分利用學(xué)生已獲得的生活體驗(yàn),通過(guò)相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動(dòng)參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識(shí),從而增強(qiáng)教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會(huì)本節(jié)課的重點(diǎn)難點(diǎn)。(三)說(shuō)教學(xué)手段:我運(yùn)用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場(chǎng)景,營(yíng)造一個(gè)形象生動(dòng)的課堂氣氛。三、說(shuō)教學(xué)過(guò)程教學(xué)過(guò)程堅(jiān)持"情境探究法",分為"導(dǎo)入新課——推進(jìn)新課——走進(jìn)生活"三個(gè)層次,環(huán)環(huán)相扣,逐步推進(jìn),幫助學(xué)生完成由感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。下面我重點(diǎn)簡(jiǎn)述一下對(duì)教學(xué)過(guò)程的設(shè)計(jì)。
一、教材分析(一)說(shuō)本框題的地位與作用《樹立創(chuàng)新意識(shí)是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實(shí)質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識(shí)》的重點(diǎn)和核心之一。學(xué)好這部分的知識(shí)對(duì)于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識(shí)起著重要的作用。(二)說(shuō)教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識(shí)目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識(shí)和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識(shí)的關(guān)系,分析辯證否定的實(shí)質(zhì)是"揚(yáng)棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識(shí)息息相關(guān)。
1、《戰(zhàn)后資本主義世界經(jīng)濟(jì)體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學(xué)時(shí)為1課時(shí)?!稓v史必修Ⅱ》一書用古今貫通、中外關(guān)聯(lián)的八個(gè)專題來(lái)著重反映人類社會(huì)經(jīng)濟(jì)和社會(huì)生活領(lǐng)域發(fā)展進(jìn)程中的重要史實(shí)。從第一單元勾勒“古代中國(guó)經(jīng)濟(jì)的基本結(jié)構(gòu)與特點(diǎn)”再到第八單元“世界經(jīng)濟(jì)的全球化趨勢(shì)”,以歷史唯物主義觀點(diǎn)清晰闡明經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史必然趨勢(shì)。第八單元的標(biāo)題是《世界經(jīng)濟(jì)的全球化趨勢(shì)》,作為最后一單元,從內(nèi)容上講,有強(qiáng)烈的時(shí)代感和現(xiàn)實(shí)意義,是全書內(nèi)容的總結(jié)與升華展望。提起“全球化”這個(gè)十年前才首次出現(xiàn)在美國(guó)《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現(xiàn)象,全球化有其自身內(nèi)部嚴(yán)密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內(nèi)容的著力點(diǎn)。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過(guò)這些公式進(jìn)行求值、化簡(jiǎn)、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡(jiǎn)單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值以及證明,進(jìn)而進(jìn)行簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡(jiǎn); 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.