提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版新課標(biāo)高中物理必修1彈性形變和彈力說課稿

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級下冊小數(shù)的大小比較說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級下冊小數(shù)的大小比較說課稿

    (三)鞏固內(nèi)化俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對此,我非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)作用。提高了教學(xué)的有效性。所以在學(xué)習(xí)完新知后我設(shè)計了兩組游泳與跑步的場景,意在讓學(xué)生知道這兩組成績排名與上面不一樣,是秒數(shù)越少成績越高.(從小到大排列)使學(xué)生明確要根據(jù)生活實際靈活的解決問題。游泳結(jié)果是9.88<10.3<11.2跑步結(jié)果是12<13.16<17.5<18.2(四)拓展練習(xí)用0、2、4、6四個數(shù)字和小數(shù)點寫出下面小數(shù),看誰寫得多。大于2的三位小數(shù)。小于6的三位小數(shù)。通過這組的練習(xí),使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的拓展。(五)總結(jié)歸納說一說小數(shù)比較大小的方法。并強調(diào)小數(shù)的數(shù)位多不一定大。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊一個數(shù)除以分?jǐn)?shù)說課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊一個數(shù)除以分?jǐn)?shù)說課稿2篇

    教學(xué)難點:理解整數(shù)除以分?jǐn)?shù)的計算方法;二、說教法和學(xué)法為了突出重點,分散難點,讓學(xué)生積極主動地參與到知識形成的過程中來。教學(xué)中采用分步探究,分步實施的原則。把整數(shù)除以分?jǐn)?shù)的計算方法分兩步進(jìn)行探究。1.整數(shù)除以幾分之一的計算方法;2.整數(shù)除以幾分之幾的計算方法;這樣做,可以使學(xué)生通過自己的努力,小組合作交流,發(fā)現(xiàn)整數(shù)除以分?jǐn)?shù)的計算方法。數(shù)學(xué)教學(xué)不僅是讓學(xué)生獲得數(shù)學(xué)的基礎(chǔ)知識,還要教給學(xué)生學(xué)習(xí)知識的方法。培養(yǎng)學(xué)生的能力,發(fā)展學(xué)生的智力。教學(xué)中,讓學(xué)生觀察,分析,討論引導(dǎo)學(xué)生尋找方法。再通過發(fā)現(xiàn)總結(jié)運用法則鞏固知識內(nèi)容。通過調(diào)動學(xué)生的積極性,不僅使學(xué)生學(xué)會了,而且會學(xué)了,會用了。從而也形成了一套良好學(xué)習(xí)方法,增強能力發(fā)展智力。

  • 人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(1)

    四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進(jìn)行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識,進(jìn)一步培養(yǎng)學(xué)生的建模意識.五、作業(yè)1. 課時練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識要點,及運用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯點;

  • 高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動探究型》教案

    高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動探究型》教案

    一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對學(xué)生來講,將有助于他們正確認(rèn)識馬克思主義,運用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強的現(xiàn)實指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運用馬克思主義哲學(xué)的基本觀點分析和解決生活實踐中的問題。3.實踐的觀點是馬克思主義哲學(xué)的首要和基本的觀點,培養(yǎng)學(xué)生在實踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實踐活動中的科學(xué)探索精神和革命批判精神。

  • 點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標(biāo)為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中政治必修3思想道德修養(yǎng)與文化修養(yǎng)教案

    人教版高中政治必修3思想道德修養(yǎng)與文化修養(yǎng)教案

    (2)這樣的例子很多,如,有的同學(xué)利用自己掌握的計算機知識制造黑客程序,破壞校園網(wǎng)的正常運行;有的生產(chǎn)者和經(jīng)營者制假售假,坑蒙拐騙;有的人身上存在著拜金主義傾向;等等。從上面的課堂探究中,我們認(rèn)識到:(1)出現(xiàn)道德沖突的原因:生活變化很快,不斷加快的城鎮(zhèn)化進(jìn)程;新型產(chǎn)業(yè)的崛起與傳統(tǒng)產(chǎn)業(yè)的衰落,使眾多勞動者不得不面對新的擇業(yè)問題;網(wǎng)絡(luò)的普及,使越來越多的人進(jìn)入社會交行的新天地;等等。在急劇變化的社會生活中,人們在告別傳統(tǒng)?;罘绞降耐瑫r,也常常遭遇思想道德下的“兩難選擇”。(2)解決道德沖突的重要途徑解決道德沖突的一個重要的途徑,就是在社會主義精神文明建設(shè)的實踐中,加強自身知識文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標(biāo)?!笳n堂練習(xí):道德沖突()①是經(jīng)濟(jì)生活日益發(fā)展的反映②不存在于現(xiàn)實生活中③是一個永遠(yuǎn)無法解決的問題④是社會生活急劇變化的產(chǎn)物

  • 人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    三、堅持人民民主專政教師活動:請同學(xué)們閱讀教材P7頁,思考下列問題:為什么要堅持人民民主專政?現(xiàn)階段如何堅持人民民主專政?學(xué)生活動:閱讀課本,找出問題。1、堅持人民民主專政的重要性(1)堅持人民民主專政是四項基本原則之一,是我國的立國之本。(2)堅持人民民主專政是現(xiàn)代化建設(shè)的政治保證。堅持人民民主,才能調(diào)動人民現(xiàn)代化建設(shè)的積極性;堅持對敵對勢力的專政,才能保障人民民主,維護(hù)國家安定。2、堅持人民民主專政的新的時代內(nèi)容突出經(jīng)濟(jì)建設(shè)服務(wù)職能;為改革開放和現(xiàn)代化建設(shè)創(chuàng)造良好國內(nèi)外環(huán)境;重視法制建設(shè),依法治國;發(fā)展人民民主,加強民主制度建設(shè)。(三)課堂總結(jié)、點評本節(jié)內(nèi)容講述了我國的國家性質(zhì)的有關(guān)知識,懂得我國是人民民主專政的社會主義國家,其本質(zhì)是人民當(dāng)家作主,我國的人民民主具有廣泛性和真實性,是真正的大多數(shù)人的統(tǒng)治,必須堅持人民民主專政。

  • 人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    4、民主和專政(1)民主,是指在范圍內(nèi),按照和來共同管理國家事務(wù)的國家制度。民主具有鮮明的,民主總是屬于。世界上從來沒有的民主。(2)專政,即主要依靠實行的統(tǒng)治。(3)民主制國家是民主和專政的辯證統(tǒng)一(對立統(tǒng)一)①民主和專政相互區(qū)別、相互對立,民主只適用于,專政則適用于。②民主與專政是相輔相成、互為前提。民主是專政的,專政是民主的。(4)人民民主專政也是民主與專政的辯證統(tǒng)一。三、必須堅持人民民主專政(1)堅持人民民主專政的必然性(原因)第一、堅持人民民主專政是之一,四項基本原則是我國的,是我國國家生存發(fā)展的。第二、堅持人民民主專政是社會主義現(xiàn)代化建設(shè)的。①只有充分發(fā)揚社會主義民主,確保的地位,保證人民,尊重和保障,才能。②只有堅持國家的專政職能,打擊,才能保障,維護(hù)。(2)堅持人民民主專政的新的要求:

  • 人教版高中歷史必修3西方人文主義思想的起源教案2篇

    人教版高中歷史必修3西方人文主義思想的起源教案2篇

    在當(dāng)時雅典的公民大會和陪審法庭上,人們常常要發(fā)表意見,要和自己的對手辯論,雅典法庭規(guī)定每個公民須替自己辯護(hù),不許旁人代辯。所以出現(xiàn)了這樣一批專門教授人辯論、演說、修辭的技巧和參政知識的職業(yè)教師。①政治因素:雅典奴隸制民主政治發(fā)展到頂峰,成為希臘政治和文化中心。參與政治生活成為每個公民生活的重要內(nèi)容②古希臘工商業(yè)發(fā)展,奴隸制經(jīng)濟(jì)繁榮(在廣大奴隸的勞動基礎(chǔ)上,古希臘的經(jīng)濟(jì)迅速發(fā)展起來,為哲學(xué)的成長提供了物質(zhì)條件)——根本原因③人的地位的提高(民主政治制度和每個公民參與政治意識的加強,使人的中心地位日益突出)最后教師強調(diào):提示并強調(diào)學(xué)生學(xué)習(xí)時要注意理解“一定的文化是一定社會的政治和經(jīng)濟(jì)在觀念形態(tài)上的反映”。3、代表人物:普羅泰格拉4、研究領(lǐng)域:人和人類社會關(guān)注人與人之間的關(guān)系、社會組織、風(fēng)俗習(xí)慣和倫理規(guī)范

  • 人教版高中政治必修4人的認(rèn)識從何而來精品教案

    人教版高中政治必修4人的認(rèn)識從何而來精品教案

    一、教材分析本框共有兩個目題:第一目從實踐含義入手,引出實踐的三大特征;第二目從實踐是認(rèn)識的來源、是認(rèn)識發(fā)展的動力、是檢驗認(rèn)識的真理性的唯一標(biāo)準(zhǔn)、是認(rèn)識的目的和歸宿四個方面論述 了實踐是認(rèn)識的基礎(chǔ)。從地位上看,學(xué)好本框不僅有利于從總體上把握各課之間的內(nèi)在聯(lián)系,而且能深刻理解馬克思主義哲學(xué)的鮮明特點和本質(zhì)特征,實現(xiàn)全書的教學(xué)目的,在全書中處于重要的地位。二、教學(xué)目標(biāo)1.知識目標(biāo):識記實踐的含義、實踐的構(gòu)成要素、實踐的特點。理解實踐具有三個基本特征、實踐是認(rèn)識的基礎(chǔ)2.能力目標(biāo):培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的能力3.情感、態(tài)度、價值觀目標(biāo):通過學(xué)習(xí),使學(xué)生樹立實踐第一的觀點,從而自覺投入到實踐之中去。三、教學(xué)重點難點重點:實踐是認(rèn)識的來源難點:實踐的基本特征

  • 人教版高中政治必修2人民代表大會制度:我國根本的政治制度教案

    人教版高中政治必修2人民代表大會制度:我國根本的政治制度教案

    二、適合我國國情的根本政治制度1、人民代表大會制度的主要內(nèi)容國家的一切權(quán)力屬于人民;人民在普選的基礎(chǔ)上選舉代表,組成各級人民代表大會作為國家權(quán)力機關(guān);由國家權(quán)力機關(guān)產(chǎn)生其他國家機關(guān),依法行使各自的職權(quán);實行民主集中制的組織和活動原則等。2、為什么說人民代表大會制度是適合我國國情的根本政治制度(1)人民代表大會制度是由人民民主專政的社會主義國家性質(zhì)決定的,是建立其他國家管理制度的基礎(chǔ),是中國社會主義民主政治最鮮明的特點。(2)人民代表大會制度以人民當(dāng)家作主為宗旨,真正保證了人民群眾參加國家管理,充分體現(xiàn)了人民的意志和利益。(3)實踐證明,我國人民民主專政的國體和人民代表大會制度的政體,是中國人民奮斗的成果和歷史的選擇,是適合我國國情的政治制度。(4)建設(shè)社會主義民主政治,最重要的是堅持和完善人民代表大會制度,決不照搬西方的政治制度模式。

上一頁123...636465666768697071727374下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。