1、舉例:2、結論:(1)物體的運動軌跡是曲線的運動叫曲線運動。(2)曲線運動中速度方向是時刻改變的。(二)、曲線運動方向:1、質點在某一點(或某一時刻)的速度的方向是在曲線的這一點的切線方向。2、曲線運動中速度方向是時刻改變的,因此曲線運動是變速運動。(三)、曲線運動條件:1、演示實驗:2、結論:當物體所受的合力的方向跟它的速度方向不在同一直線時,物體就做曲線運動。七、課堂小結:1、運動軌跡是曲線的運動叫曲線運動。2、曲線運動中速度的方向是時刻改變的,質點在某一點的瞬時速度的方向在曲線的這一點的切線上。3、當合外力F的方向與它的速度方向有一夾角a時,物體做曲線運動。八、鞏固訓練:1、關于曲線運動,下列說法正確的是()。A:曲線運動一定是變速運動;B:曲線運動速度的方向不斷的變化,但速度的大小可以不變;
學生中存在這樣的問題:既然宇宙間的一切物體都是相互吸引的,那么為什么沒有吸引到一起?為了解決這個問題,安排了例題2例2、兩物體質量都是1kg,相距1m,它們間的萬有引力是多少?通過本題,讓學生認識到一般物體間的引力極小,不用考慮。那么,質量很大的天體為什么沒被吸引到一塊?從而引出下節(jié)課題。4.課堂小結:本節(jié)課,從天體運動出發(fā),通過推理證明,形成理性認識,再結合例題習題使學生的理性認識再反饋到具體事實。形成實踐-理論-實踐的認知循環(huán),順應了認知規(guī)律.。本共設計了很多問,能讓學生想的盡量讓學生想、能學生說的盡量讓學生說、能讓學生做的盡量讓學生做,全面發(fā)展學生的各方面能力。再通過作業(yè)和探究性課題使學生的思維活動在時空上得以延續(xù)。5.布置作業(yè):布置作業(yè)時刻意安排引入:萬有引力、重力、向心力、三者的聯(lián)系,通過引導學生對比結果,從中發(fā)現(xiàn)問題:萬有引力與重力向心力的關系與區(qū)別,為下節(jié)知識的難點突破作好了鋪墊。
了解了第一宇宙速度及其意義之后,繼續(xù)提出問題,讓學生思考:如果衛(wèi)星的發(fā)射速度大于第一宇宙速度7.9km/s ,會出現(xiàn)什么情況呢?先讓學生們大膽猜想,然后再向學生們介紹 衛(wèi)星發(fā)射速度大于第一宇宙速度后的幾種可能情況,引出第二宇宙速度和第三宇宙速度,讓學生對第二、第三宇宙速度及其意義做定性了解。并通過演示Flash課件,幫助學生理解、加深學生印象。在學生對人造衛(wèi)星的原理及發(fā)射衛(wèi)星的速度條件有了初步了解后,接下來引導學生對衛(wèi)星的運動規(guī)律作進一步的探索。實際上衛(wèi)星并不是沿地表水平發(fā)射的,而是用火箭多次加速送到一定的高度的軌道后,再沿以地心為圓心的圓周的切線運行的。讓學生繼續(xù)深入思考:衛(wèi)星在不同高度繞地球運行時的速度怎么求呢?將衛(wèi)星送入低軌道和高軌道所需的速度都一樣么?如果把不同軌道上的衛(wèi)星繞地球的運動都看成是勻速圓周運動,引導學生利用已學的萬有引力和圓周運動的相關知識,探究衛(wèi)星繞地球的運行規(guī)律。
(四)、彈性勢能(據(jù)課時情況,可以讓學生自學)生活中還有一些物體既沒有運動也沒有很大的高度卻同樣“儲存”著能量,哪怕它只是孩童手里的玩具(圖片:彈弓)。張緊的弓一撒手就會對箭支做功改變它的動能,松弛的弓有這樣的本領嗎?同樣是弓前者具有能量而后者沒有,那么什么情況下物體才具有這種能量呢?張緊的弓在恢復原狀的過程會對外做功,但是拉斷的弓還能有做功的本領嗎?1.定義:物體由于發(fā)生彈性形變而具有的能量叫做彈性勢能。2.彈性勢能的大小與哪些因素有關呢?3、勢能由相互作用的物體的相對位置決定的能量。重力勢能:由地球和物體間相對位置決定。彈性勢能:由發(fā)生形變的各部分的相對位置決定。(五).反饋練習1. 物體在運動過程中,克服重力做功50J, 則( )A.重力做功為50JB.物體的重力勢能一定增加50JC.物體的重力勢能一定減少50JD.重力做功為-50J
情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
三、制定實驗方案的兩個問題:1.怎樣測量(或比較)物體的加速度:引導學生思考、討論并交流。學生可能會提出下面的一些方案:方法一:測出初速度為零的勻加速直線運動的物體在 時間內的位移 ,則 ;方法二:在運動的物體上安裝一條打點計時器的紙帶,根據(jù)紙帶上打出的點來測量加速度;方法三:測出兩個初速度為零的勻加速運動的物體在相同的時間內發(fā)生的位移 、 ,則 ;方法四:測出兩個初速度為零的勻加速運動的物體在相同的位移內所用的時間 、 ,則 ;2.怎樣提供并測量物體所受的恒力:教師提出:現(xiàn)實中,除了在真空中拋出或落下的物體(僅受重力)外,僅受一個力的物體幾乎是不存在的。然而,一個單獨的力作用效果與跟它大小、方向都相同的合力的作用效果是相同的,因此,實驗中力 的含義指物體所受的合力。以在水平軌道上用繩牽引小車加速運動為例,小車受到四個力的作用,即重力、支持力、繩的拉力和軌道對小車的摩擦力(當物體運動的速度比較小時,我們可以忽略空氣的阻力)。
1.加速度與力的關系:實驗的基本思路是保持物體的質量不變,測量物體在不同的力的作用下的加速度,分析加速度與力的關系。有了實驗的基本思路,接下去我們就要準備實驗器材,以及為記錄實驗數(shù)據(jù)而設計一個表格。為了更直觀地判斷加速度與力的數(shù)量關系,我們以 為縱坐標、 為橫坐標建立坐標系,根據(jù)各組數(shù)據(jù)在坐標系中描點。如果這些點在一條過原點的直線上,說明 與 成正比,如果不是這樣,則需進一步分析。2.加速度與質量的關系:實驗的基本思路是保持物體所受力不變,測量不同質量的物體在該力作用下的加速度,分析加速度與質量的關系。有了實驗的基本思路,接下去我們就要準備實驗器材,以及為記錄實驗數(shù)據(jù)而設計一個表格。為了更直觀地判斷加速度與質量的數(shù)量關系,我們以 為縱坐標、 為橫坐標建立坐標系,根據(jù)各組數(shù)據(jù)在坐標系中描點,根據(jù)擬合的曲線形狀,初步判斷 與 的關系是反比例函數(shù)。再把 圖像改畫為 圖像,如果是一條過原點的斜直線,說明自己的猜測是否正確。
民族精神是一個民族賴以生存和發(fā)展的精神支撐。一個民族,沒有振奮的精神和高尚的品格,不可能自立于世界民族之林。“鐵人”精神是“愛國、創(chuàng)業(yè)、求實、奉獻”的大慶精神的典型化、人格化。其主要方面包括:“為祖國分憂、為民族爭氣”的愛國主義精神;為“早日把中國石油落后的帽子甩到太平洋里去”,“寧肯少活二十年,拼命也要拿下大油田”的忘我拼搏精神;干事業(yè)“有條件要上,沒有條件創(chuàng)造條件也要上”的艱苦奮斗精神;“要為油田負責一輩子”,“干工作要經(jīng)得起子孫萬代檢查”,對工作精益求精,為革命“練一身硬功夫、真本事”的科學求實精神;不計名利,不計報酬,埋頭苦干的“老黃?!本?;等等。40多年來,“鐵人”精神早已家喻戶曉,深入人心,成為大慶人的共同理想、信念和行為準則。“鐵人”精神是對王進喜崇高思想、優(yōu)秀品德的高度概括,體現(xiàn)了我國工人階級精神風貌和中華民族傳統(tǒng)美德的完美結合?!拌F人”精神是戰(zhàn)勝困難、勇往直前、不斷取得新勝利的巨大精神力量?!拌F人”精神是我們強大的精神支柱。
研究一種物理現(xiàn)象,總是要先從現(xiàn)象的描述入手。機械運動作為自然界最簡單和最基本的運動形態(tài),它所描述的是物體空間位置隨時間變化的情況。因此,本節(jié)學習描述質點做機械運動需要時刻、時間間隔和位移等概念。相當一部分高一學生在具體過程中難以區(qū)別時刻和時間間隔。另外,由于思維的定式,在第一次接觸既要考慮大小又要考慮方向的問題時,會因不適應造成學習困難。所以,區(qū)別“路程與位移”“時刻和時間間隔”是教學的重難點所在。學習這些內容的過程與方法對學習速度和加速度可以起到奠定基礎的作用。教學的對象是高一的學生,這一時期的學生處在好奇善問、創(chuàng)新意識強烈的青少年期。對于生活中出現(xiàn)的各種現(xiàn)象具有濃厚的興趣。但他們的思維還停留在簡單的代數(shù)運算階段,對于矢量和矢量運算的理性認識幾乎沒有。且對生活中出現(xiàn)的時間、時刻、時間間隔等不能做出很好的區(qū)分,對時常提及的路程、距離等形成了模糊的前概念。
一、 教材分析與學情分析教材分析人民教育出版社普通高中課程標準實驗教科書必修2第七章第九節(jié)。本節(jié)內容安排在學習機械能守恒定律之后的目的,是為了使學生在理論上對機械能守恒定律有所了解的基礎上,通過實驗測量及對實驗數(shù)據(jù)的分析處理,對機械能守恒定律及條件有深刻的認識。學情分析知識層面:學生已經(jīng)掌握了動能、重力勢能等概念以及動能定理、機械能守恒定律等定理、定律;知道功是能量轉換的量度以及機械能守恒的條件。能力層面:學生已具備一定的實驗操作技能,會用打點計時器以及直尺等實驗儀器。具備一定的數(shù)據(jù)處理能力。二、教學目標與重點、難點教學目標知識與技能:1、會用打點計時器打下的紙帶計算物體運動的速度。2、掌握驗證機械能守恒定律的實驗原理。
學生回答的方法多樣,讓各小組根據(jù)自己討論出來的方法對自己實驗出來的紙帶進行數(shù)據(jù)處理,并求出加速度,并且將多條紙帶都進行處理,同時提醒學生對紙帶的選擇。接著,我會用多媒體展示重物下落實驗打出來的紙帶,用表格列出一段紙帶上各點的瞬時速度,準確畫出v-t圖像,求出加速度,將結果給予學生的結果作對比,確定出正確結論。最后讓學生分析總結:自由落體運動是初速度為零的勻加速直線運動,而且,多條紙帶算出來的加速度的數(shù)值都接近相等,即加速度在實驗誤差允許范圍內是相等的。引出重力加速度,介紹概念、方向及大小。(強調“同一地點”,讓學生閱讀教材中一些地點的重力加速度,可以了解重力加速度的大小與緯度有關,緯度越大加速度越大)。學習了重力加速度后讓學生根據(jù)之前學習的勻變速直線運動公式推導出自由落體的運動規(guī)律。設計意圖:讓學生在學習過程中的主體地位和自主觀能動性得到充分發(fā)揮,取長補短,培養(yǎng)了學生的實驗操作能力,又使學生對自由落體運動的性質有深刻的印象,從而解決了本節(jié)課第二個難點。
d.某物體沿直線向東運動,原來的速度是5m/s,2s后速度減小到3m/s,求2s內物體速度變化。④如何探究物體作勻速圓周運動時,在Δt時間內的速度變化?分析:有了同一直線上速度變化的鋪墊后,討論物體做勻速圓周運動速度的變化就比較自然了,為了給向心加速度方向的學習打好基礎,可以通過小組協(xié)作,進一步完成下列思考題,使同學們認識到:時間間隔起短,速度變化的方向起接近半徑方向。(多媒體屏幕投影)a.物體沿半徑為1m的軌道做勻速圓周運動,線速度大小為,求1s內物體速度變化并畫出1s內速度變化的示意圖。b.分別求出上題中物體在0.5s、0.25s內速度變化并畫出相應的示意圖。由于沒有辦法直接利用實驗來驗證速度變化的方向,所以,我們采用提供思考題的方法,引導同學在合作學習、自主探究中完成。有了速度變化的研究為鋪墊,加速度的方向問題就迎刃而解了。
設計意圖:通過設疑、討論及學生的親身體驗與教師的引導,得到描述圓周運動快慢的兩個物理量,也就成功的打破了學生在認識上的思維障礙,突破了物理概念教學的難點。在解決線速度和角速度的問題之后,我將引領學生學習勻速圓周運動的概念以及勻速圓周運動中線速度、角速度的特點。并引出勻速圓周運動中周期、轉速的知識。為了加深學生對線速度、角速度與半徑關系的認識,我設計了第三個學生體驗活動:四名學生以我為圓心做圓周運動,四名學生始終并列,這時里圈同學走動不急不慢,而外圈同學則要小跑。通過學生的活動,不難發(fā)現(xiàn)在角速度相同的情況下,半徑越大的線速度也越大。定性的得到了線速度、角速度與半徑的關系。接下來讓學生利用所學知識推導線速度、角速度與半徑的關系。設計意圖:這樣就通過設疑、學生猜想、體驗、推導的方式得到了結論,突破了本節(jié)課的難點即線速度、角速度與半徑的關系。
一、說教材《質點 參考系和坐標系》是人教版普通高中物理必修一第一章第一課的內容。本節(jié)課主要介紹了質點、參考系、坐標系的基本概念。通過本節(jié)課的學習為進一步學習后續(xù)課程起到了鋪墊的作用。根據(jù)上述教材的結構和內容分析,又考慮到高一年級學生的認知結構及其心理特征,我制定了以下三維教學目標:1、知識與技能:知道質點的概念及條件;知道參考系的概念及作用;掌握坐標系的簡單應用。2、過程與方法:促進學生自主學習,讓學生積極參與、樂于探究、勇于實驗、勤于思考,培養(yǎng)學生的科學探究能力。3、情感態(tài)度與價值觀:通過質點 參考系和坐標系的學習,使學生了解生活與物理的關系,讓學生學會用科學的思維去看待事物。根據(jù)普通高中物理課程標準,并在吃透教材的基礎上,我確定了以下教學重點和難點:教學重點:質點概念的建立。只有掌握了這一點才能更加準確的理解和掌握后續(xù)教材的相關內容。
(三)、中華之瑰寶.民族之驕傲1.我國各具特色的民族文化異彩紛呈.都為中華文化的形成和發(fā)展做出了重要貢獻(1)我國的雕刎建筑藝術是各族人民共同創(chuàng)造的,都是中華文化的瑰寶。例如:敦煌石窟、云岡石窟;克孜爾千佛洞等,是古代的漢族、鮮卑以及西域各族的藝術家和勞動人民共同創(chuàng)造的。(2)許多少數(shù)民族用自己的語言文字創(chuàng)造了優(yōu)秀的民族文學。例如:藏族的《格薩爾王傳》、蒙古族的《江格爾》和柯爾克孜族的《瑪納斯》被并為三大英雄史詩?!笞⒁猓好褡逦幕钌畹伢w現(xiàn)著各民族的風俗和精神面貌,通過一定的物質展現(xiàn),可以表現(xiàn)在建筑、民族文學、舞蹈、習俗、信仰、衣著等方方面面。◇點撥:“相關鏈接”中提到的《江格爾)是蒙古族衛(wèi)拉特郝英雄史詩。史詩的篇幸結構、故事情節(jié)、語言風格等具有蒙古族說唱藝術的特點。從民族文學角度反映了本民族的文化生活.同時也為中華文化增添了絢麗色彩?!笳n堂探究:(1)你還知道哪蝗少數(shù)民族舞蹈?它們務有什么特點?
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤