康橋風光、劍橋大學風貌(配上劍橋的優(yōu)美圖片,讓學生從視覺上對課文有一定的感知,幫助理解詩人的“康橋情結”)2.誦讀體味(教學重點的解決)先讓學生自由朗誦。要求學生談談對全詩的整體感受教師稍加點撥,答案不需標準,只要整體把握正確即可。然后逐字逐句指導朗誦并結合作者獨特的人生際遇分析本詩所體現(xiàn)的詩情和藝術上的“三美”,從而達到準確把握作品主旨的目的。這種引導是循序漸進的,也符合學生的認知規(guī)律。簡介詩歌“三美”追求聞一多先生是我國現(xiàn)代文學史上集詩人、學者和斗士于一身的重要詩人。他不但致力于新詩藝術美的探索,提出了音樂美(音節(jié))、繪畫美(詞藻)、建筑美(節(jié)的勻稱和句的均齊)的詩歌\"三美\"的新格律詩理論主張,還努力進行創(chuàng)作實踐,寫出了許多精美詩篇。他的新格律詩理論被后人稱為現(xiàn)代詩學的奠基石,影響深遠。
2.對比聯(lián)想法。讓學生在誦讀的基礎上,對《再別康橋》中康橋美景的賞析和意象進行解讀,引導學生欣賞詩歌的畫面美,從而受到審美的體驗。3.探究式學習法。引導學生對《再別康橋》情感和主題的探究。充分發(fā)揮學生自主學習的能力,引導學生主動地獲取知識,重視學生的實踐活動。三、學法1、誦讀法 加強誦讀,這是閱讀詩詞的一般方法。2、體悟法 通過意象把握情感,主要是讓學生設身處地走進雨巷去感悟。3、聯(lián)想比較法 通過與詩人的其他作品的比較學習,體會創(chuàng)作風格及作者情感。四、教學過程教學過程設計一、導入自古以來,離別總免不了沉重的愁緒。比如王維《宋元二使安西》:勸君更盡一杯酒,西出陽關無故人。李白《黃鶴樓送孟浩然之廣陵》:孤帆遠影碧空盡,唯見長江天際流。柳永《雨霖鈴》執(zhí)手相看淚眼,竟無語凝噎。正所謂自古多情傷離別,更那堪冷落清秋節(jié)啊。(設計目的:以離別主題的詩歌導入課文,讓學生更快地進入課文情境。)
三、說重點、難點 根據(jù)學生實際情況以及課文內容特點,將重難點確定為:掌握運用肖像描寫、動作描寫、語言描寫等塑造人物的方法。以正確的立場、理性的頭腦和敏銳的眼睛觀察思考,分析鑒別人物形象,體會經(jīng)典小說中人物的不幸遭遇,從而提升對社會現(xiàn)實觀察、分析、判斷的能力。四、說教學方法 1.教法根據(jù)學生的這些情況,我采用了以下的教法:⑴創(chuàng)設情境法。通過創(chuàng)設“探究祥林嫂之死”閱讀情境與任務,激發(fā)學生閱讀興趣,引導學生發(fā)揮主觀能動性,逐層深入閱讀、鑒賞與探究。⑵點撥法。適當點撥,引導學生回憶以往學過塑造人物形象的方法等相關知識。 ⑶當堂訓練法。通過讓學生用語言描述不同時期祥林嫂的眼睛特點,檢測學生的感悟情況,判斷學生對所學內容的接受程度。2.學法本節(jié)課充分發(fā)揮學生主體作用,引導學生自主學習,探究式學習。具體方法如下:(1)課前預習(此文長達萬余字,難以做到在課堂上讓學生通讀全文,需要提前布置課前預習任務,培養(yǎng)學生閱讀的自覺性。)
運用比較法,讓學生討論比較字詞改換后與原詩在表達效果上有何異同,然后教師和同學們共同總結出原詩中的畫線字詞主要運用了比喻和擬人等修辭手法,顯得既生動又含蓄,富有意境美,而改后的字詞顯得直白而又重復。通過文本研讀部分的學習,學生對詩歌內容有了較深入的理解,為了使學生拓寬知識面,加強思想價值觀的教育引導,在拓展練習部分我設置了一個探究性的問題,讓學生談談如何看待陶淵明歸隱的問題,我采用合作探究法,讓學生分組互動討論、自由發(fā)言。教師針對學生的發(fā)言,及時地加以點撥:陶淵明不與統(tǒng)治者合作,令人敬佩;歌唱田園風光,令人贊嘆;歸隱田園有獨善其身,消極避世因素,這一點自然不應當苛求古人。
2.體味詩人的人生際遇,感受詩人憂國憂民的愛國情操。●重點、難點重點:感受、品味詩歌的意境。難點:對作者隱晦情感的把握?!窠鉀Q辦法1.指導朗讀,強化背誦。建議學生課前完熟讀甚至背誦6首詩,這有助于學生初步了解詩意,以便較快進人對詩作的理解,將教學重點放到把握、分析意境方面。2.提出問題,重視體悟。精讀課要解決四個問題:詩中寫了什么,怎么寫的,為什么寫,這樣寫的好處。聯(lián)想和想象是填補藝術空白、品賞意境的好辦法,就這一點,教師在精讀課上要做出示范,自讀課可把填補的任務交給學生。3.補充史料,做好總結。論世知人,有利于理解詩歌。教師可提供適當?shù)谋尘百Y料。4.引導學生總結鑒賞詩歌的方法:解題、釋句、入境、會意。
四、教法與學法1.誦讀法,詩歌是情感的藝術,尤其是《再別康橋》這樣一首意境很美的詩歌,更需要通過誦讀去感受詩中的情感、韻味,把握其中的美。誦讀方式可以范讀、齊讀等多種方式。2.發(fā)現(xiàn)法,新課程標準倡導培養(yǎng)學生的發(fā)現(xiàn)意識、發(fā)現(xiàn)能力。把文本放給學生,給學生充分的時間和空間去發(fā)現(xiàn),去探究,是一種極其有效的學習方式。3.探究法。新課程標準倡導“自主、合作、探究”的學習方式,讓學生通過自主探究、合作探究,培養(yǎng)學生自主獲得知識的能力。 五、過程分析(一)課前預習①課前指導:指導學生閱讀學案中準備的有關徐志摩和寫作背景的資料。②指導學生誦讀文本,讀準字音,讀出節(jié)奏,體會感情。鑒賞詩歌離不開詩歌意象和有感情的誦讀,引導學生邊讀邊思考:詩歌寫了什么內容?從哪些句子看出來?勾畫出你感受最深的句子。怎樣朗讀才能從分表達作者的感情?讓學生設計一個自己認為最值得探究的問題。讓學生設計一個自己認為本文最值得探究的問題。
一、說教材選修課是在必修課程基礎上的拓展與提高,它力爭促進學生各自特長和個性的形成。我們在必修部分已經(jīng)學習了李白的一首古風《蜀道難》,學生對李白其人及其詩風已有了一定的了解。本單元的任務是“因聲求氣,吟詠詩韻”,它要求我們通過對古典詩歌聲律特點的把握,學習有感情地吟詠,誦讀作品,并深入地了解詩歌的感情。《將進酒》一詩時而奔放,時而深沉,感情大起大落變化明顯,學生容易進入吟詠和體會情感的體驗閱讀中。二、說教法學法現(xiàn)代語文觀念中提倡語文教學要多讀,要培養(yǎng)學生的語感,特別是對一些優(yōu)秀的古詩文??梢娫趯W習古代詩文的過程中,誦讀是非常重要的,有助于加深學生對課文思想內容的理解。可以在朗讀中理解詩文的內容,所謂“讀書百遍其義自見”,在反復的朗讀中可以慢慢體會詩人所要表達的思想感情,因此本堂課我采取以誦讀為線索,完成對詩歌思想內容的理性思考。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結讓學生總結本節(jié)課所學主要知識及解題技巧
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課在已學冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實上,這種差異正是不同類型現(xiàn)實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標1.掌握常見增長函數(shù)的定義、圖象、性質,并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質的比較,培養(yǎng)數(shù)學建模和數(shù)學運算等核心素養(yǎng).數(shù)學學科素養(yǎng)1.數(shù)學抽象:常見增長函數(shù)的定義、圖象、性質;2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學運算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學建模:通過由抽象到具體,由具體到一般的數(shù)形結合思想總結函數(shù)性質.重點:比較函數(shù)值得大??;難點:幾種增長函數(shù)模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。
等式性質與不等式性質是高中數(shù)學的主要內容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質與不等式性質也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質與不等式性質以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質;2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質猜測不等式的基本性質。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學習指數(shù)函數(shù)的基礎上通過實例總結歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關的問題.課程目標1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入我們已經(jīng)研究了死亡生物體內碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學習,讓學生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應用.
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應關系,這種關系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關系式,初步體會應用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學和其他學科中的重要性. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:總結函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學運算:結合函數(shù)圖象或其單調性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學建模:在具體問題情境中,運用數(shù)形結合思想,將自然語言用數(shù)學表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎. 本節(jié)內容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內容是高中數(shù)學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質列不等式組,此過程中重點關注端點是否含“=”及?問題;
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎,在教材中起承上啟下的作用。同時,它體現(xiàn)的數(shù)學思想與方法在整個中學數(shù)學學習中起重要作用。課程目標1.理解并掌握同角三角函數(shù)基本關系式的推導及應用.2.會利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解同角三角函數(shù)基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數(shù)學運算:利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數(shù)基本關系式的推導及應用; 難點:會利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明.