方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.
意圖:課后作業(yè)設計包括了三個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設計,通過此題可讓學生進一步認識勾股定理的前提條件.效果:學生進一步加強對本課知識的理解和掌握.教學設計反思(一)設計理念依據(jù)“學生是學習的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結(jié)合的方式進行主動學習.教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學生在學習過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關系,進而得到勾股定理.
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數(shù)學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數(shù)學與生活的密切聯(lián)系.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設計為什么,要證明)推理的意義:數(shù)學結(jié)論必須經(jīng)過嚴格的論證檢驗數(shù)學結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數(shù)學結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數(shù)學解決實際問題的能力,為后面的學習打下基礎.
第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結(jié)本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
方法總結(jié):利用三角形三邊的數(shù)量關系來判定直角三角形,從而推出兩線的垂直關系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力、歸納能力.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣.
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減小.三、板書設計1.函數(shù)與圖象之間是一一對應的關系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關系.
四、教學設計反思這節(jié)內(nèi)容是學生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖象的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應讓學生自己得出.在得出結(jié)論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據(jù)學生狀況,教學設計也應做出相應的調(diào)整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應的圖形具有什么特征呢?
解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數(shù),所以A2015的坐標為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設計軸對稱與坐標變化關于坐標軸對稱作圖——軸對稱變換通過本課時的學習,學生經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程,掌握空間與圖形的基礎知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學學習的好奇心與求知欲.教學過程中學生能積極參與數(shù)學學習活動,積極交流合作,體驗數(shù)學活動的樂趣.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權(quán)和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結(jié)論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結(jié)論成立.在假設結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結(jié)論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結(jié)論成立.解決幾何證明題時,應結(jié)合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當不等式的兩邊都乘(或除以)一個負數(shù)時,不等號的方向才改變.三、板書設計1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學習不等式的基本性質(zhì),在學習過程中,可與等式的基本性質(zhì)進行類比,在運用性質(zhì)進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質(zhì)疑,通過練習中易出現(xiàn)的錯誤,引導學生歸納總結(jié),提升學生的自主探究能力.
方法總結(jié):解題的關鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關鍵是由已知等量關系列出方程從而解決問題.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.
探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關系列出方程即可.設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結(jié)合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.
解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于 第一、三象限內(nèi)當k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設計反比例函數(shù)的性質(zhì)性質(zhì)當k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關性質(zhì),進行語言表述,訓練學生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.