情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1、、用多媒體幻燈片逐一出示各種圖片。創(chuàng)設(shè)問題情境。引導(dǎo)學(xué)生提出用乘法計算問題。內(nèi)容:郵局郵票出售處,有的郵票一枚80分,有的郵票一枚60分。百貨商店鞋柜,一雙旅游鞋78元,一雙皮鞋164元。電影院售票處:日場一張電影票15元,夜場一張電影票20元。小袋鼠蹦跳一次約2米,小袋鼠蹦跳33次。文具商店柜臺,每合圖釘120個,每包日記本25本。2、出示教科書第70頁例2主題圖:三年紀(jì)一班29個同學(xué)去參觀航天航空展覽,門票每張8元。請學(xué)生提出問題,老師在學(xué)生提出問題的基礎(chǔ)上,補充提出如果老師這時只帶250元錢去夠嗎?二、嘗試解決。1、教師先請學(xué)生猜一猜帶250元夠不夠?再請學(xué)生思考怎么知道我們猜得對不對呢?看看小精靈是怎么說的?2、怎么才能知道8×29大約是多少呢?能不能用我們前面學(xué)過的計算方法來解決這個問題。3、啟發(fā)學(xué)生想出前面我們已經(jīng)學(xué)過整十乘一位數(shù)的乘法口算。我們可以把29看成最接近的整十?dāng)?shù)來估算。
三、說教法、學(xué)法從素質(zhì)教育著眼點來看,要貫徹傳授知識與培養(yǎng)能力相結(jié)合的原則,不僅要使學(xué)生學(xué)會知識,更要使學(xué)生會學(xué)、樂學(xué)、主動去學(xué)。為了更充分地發(fā)揮學(xué)生的主體地位,使他們能夠自主學(xué)習(xí),切實提高課堂教學(xué)效率。在教學(xué)方法上,采用談話激趣、回憶交流、討論歸納、強化練習(xí)等教學(xué)方法,循循誘導(dǎo),讓學(xué)生在比賽、游戲、練習(xí)、合作中自主學(xué)習(xí),鞏固和拓展所學(xué)知識。四、說教學(xué)過程“將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”“努力營造學(xué)生在教學(xué)活動中自主學(xué)習(xí)的時間和空間”從這種設(shè)計理念出發(fā),為了更好的達(dá)到教學(xué)目標(biāo),突出重點,增強教學(xué)效果,使學(xué)生計算能力得到真正發(fā)展,我對本節(jié)課設(shè)計如下幾個環(huán)節(jié):(一)、激趣導(dǎo)入。同學(xué)們,這幾天我們一直在學(xué)習(xí)多位數(shù)乘一位數(shù)的知識,你們想不想知道我們今天要學(xué)習(xí)什么知識?
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
介紹人物,導(dǎo)入新課 1、啟發(fā)談話。課前同學(xué)們自己已經(jīng)讀過了課文,查閱了有關(guān)資料,誰能向大家介紹一下高爾基? 2、學(xué)生之間交流收集的有關(guān)高爾基的資料?! ?、師出示高爾基的畫像,并歸納:高爾基(1886年~1936年),是蘇聯(lián)偉大的無產(chǎn)階級文學(xué)家,世界著名的文學(xué)家。他寫了很多書,發(fā)表了《童年》、《在人間》、《我的大學(xué)》、《母親》等多部小說以及著名的散文詩《海燕》和一系列劇本?!皶侨祟愡M(jìn)步的階梯”這句膾炙人口的名言,就出自高爾基的筆下,全世界人民都很敬愛他。他的作品在我國廣為流傳,得到人們的喜愛。今天,我們來學(xué)習(xí)高爾基與一位小學(xué)生之間的故事:小攝影師。(板書,提示“攝”的讀音。) 高爾基與小攝影師之間到底發(fā)生了什么事呢?我們下面來看課文
初讀課文,學(xué)習(xí)字詞。 1.出示自學(xué)提示:默讀課文,一邊讀一邊畫出不認(rèn)識的字和不理解的詞,并借助詞典等學(xué)習(xí)工具書理解。 2.教師檢查學(xué)生學(xué)習(xí)情況。 ?。?)檢查生字讀音?! 、賲⒉睿?cēncī)芭蕉(b?。┮陆螅?jīn)嫵媚(wǔ) ②“薄”是一個多音字,在字典中有三個讀音,一個讀bo,當(dāng)“迫近、靠近”講,組詞是日薄西山;還有的當(dāng)“輕微、少”、“不強壯”、“不厚道”、“看不起”等意思,組詞是“廣種薄收”、“單薄”、“輕薄”、“厚古薄今”等;一個讀bo,組詞是薄荷,多年生草本植物;還有一個讀音是bao,表示感情冷淡、不濃、不肥沃等意思。課文中 ?。?)指導(dǎo)易混淆的字?! 坝摹笔前氚鼑Y(jié)構(gòu),外面是“山”,里面是兩個“幺”?! 鞍浮笔巧舷陆Y(jié)構(gòu),上面是“安”,下面是“木”?! 氨 币c“簿”相互比較,可以通過組詞的形式來辨析,“薄”組詞是“薄餅”,“簿”組詞是練習(xí)簿。 “糊”:左右結(jié)構(gòu),與“米”有關(guān),形容非常黏稠、混沌不清的狀態(tài)。
深入讀議,體會“我”受鼓舞爬上峰頂 1、在爬山之前,望著又高又陡的天都峰,“我”心里是怎么想的?默讀課文,圈點勾畫,想想從哪些詞語、句子中看出“我”有害怕畏懼的心理。 指名交流,出示并指導(dǎo)讀好問句“我爬得上去嗎?”、感嘆句“真叫人發(fā)顫!”以及語氣詞“啊”“哩”等,讀中體會“我”缺乏自信、畏懼退縮的心理?! ?、結(jié)果“我”爬上峰頂了嗎?自由讀課文的第8至10自然段,出示“我”說的話,指名朗讀?! ?、“我”看到了什么從而下定決心爬上峰頂呢?自由讀課文第3到7自然段,想想我的心理發(fā)生了怎樣的變化?! . 出示第4段重點句,引導(dǎo)學(xué)生深入討論交流,從中感受到“我”受老爺爺爬山鼓勵而下定決心爬上峰頂?shù)膬?nèi)心活動。 b. 體會“我”的心理,指導(dǎo)朗讀3、4自然段?! ?、“我”是怎么爬的?自由讀6、7自然段,畫出描寫爬山動作的詞語?! . 學(xué)生讀書圈劃?! .學(xué)生交流。引導(dǎo)學(xué)生聯(lián)系上下文,體會“奮力”是拼盡全身力氣的意思?! 摹芭手F鏈”、“手腳并用向上爬”可以看出爬山的艱難?! .引讀第7段,從“終于”二字上體會爬得辛苦、上山后的喜悅?! . 體會爬山的艱難、上山后的喜悅,指導(dǎo)朗讀6、7兩段。
16.已知甲組有28人,乙組有20人,則下列調(diào)配方法中,能使一組人數(shù)為另一組人數(shù)的一半的是( ).A.從甲組調(diào)12人去乙組 B.從乙組調(diào)4人去甲組C.從乙組調(diào)12人去甲組 D.從甲組調(diào)12人去乙組,或從乙組調(diào)4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負(fù)一場是0分,一個隊打了14場比賽,負(fù)了5場,共得19分,那么這個隊勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?( )A.3個 B.4個 C.5個 D.6個三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標(biāo)明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.
一、 背景與意義分析統(tǒng)計主要研究現(xiàn)實生活中的數(shù)據(jù),它通過收集、整理、描述和分析數(shù)據(jù)來幫助人們對事物的發(fā)展作出合理的判斷,能夠利用數(shù)據(jù)信息和對數(shù)據(jù)進(jìn)行處理已成為信息時代每一位公民必備的素質(zhì)。通過對本章全面調(diào)查和抽樣調(diào)查的學(xué)習(xí),學(xué)生可基本掌握收集和整理數(shù)據(jù)的方法。二、 學(xué)習(xí)與導(dǎo)學(xué)目標(biāo)1 知識積累與疏導(dǎo):通過復(fù)習(xí)小結(jié),進(jìn)一步領(lǐng)悟到現(xiàn)實生活中通過數(shù)據(jù)處理,對未知的事情作出合理的推斷的事實。2 技能掌握與指導(dǎo):通過復(fù)習(xí),進(jìn)一步明確數(shù)據(jù)處理的一般過程。3 智能提高與訓(xùn)導(dǎo):在與他人交流合作的過程中學(xué)會設(shè)計調(diào)查問卷。4 情感修煉與提高:積極創(chuàng)設(shè)情境,參與調(diào)查、整理數(shù)據(jù),體會社會調(diào)查的艱辛與樂趣。5 觀念確認(rèn)與引導(dǎo):體會從實踐中來到實踐中去的辨證思想。三、 障礙與生成關(guān)注調(diào)查問卷的設(shè)計及根據(jù)調(diào)查總結(jié)的報告給出合理的預(yù)測。四、 學(xué)程與導(dǎo)程活動活動一 回顧本章內(nèi)容,繪制知識結(jié)構(gòu)圖
一.學(xué)習(xí)目的和要求:1.對本章內(nèi)容的認(rèn)識更全面、更系統(tǒng)化。2.進(jìn)一步加深對本章基礎(chǔ)知識的理解以及基本技能的掌握,并能靈活運用。二.學(xué)習(xí)重點和難點:重點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用。難點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用與提高。三.學(xué)習(xí)方法:歸納,總結(jié) 交流、練習(xí) 探究 相結(jié)合 四.教學(xué)目標(biāo)和教學(xué)目標(biāo)解析:教學(xué)目標(biāo)1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關(guān),與字母的排列順序無關(guān)。教學(xué)目標(biāo)2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。
. 一個數(shù)的倒數(shù)等于它本身的數(shù)是()A.1 B. C.±1 D.04. 下列判斷錯誤的是()A.任何數(shù)的絕對值一定是非負(fù)數(shù); B.一個負(fù)數(shù)的絕對值一定是正數(shù);C.一個正數(shù)的絕對值一定是正數(shù); D.一個數(shù)不是正數(shù)就是負(fù)數(shù);5. 有理數(shù)a、b、c在數(shù)軸上的位置如圖所示則下列結(jié)論正確的是()A.a(chǎn)>b>0>c B.b>0>a>cC.b<a<0< D.a(chǎn)<b<c<06.兩個有理數(shù)的和是正數(shù),積是負(fù)數(shù),則這兩個有理數(shù)( )A.都是正數(shù); B.都是負(fù)數(shù); C.一正一負(fù),且正數(shù)的絕對值較大; D.一正一負(fù),且負(fù)數(shù)的絕對值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數(shù)的和是()A.-1999 B.-1998 C.1999 D.20009. 當(dāng)n為正整數(shù)時, 的值是()