提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

初中道德與法治七年級上冊成長的節(jié)拍3作業(yè)設計

  • 中班健康活動設計

    中班健康活動設計

    活動內容:人是五官——眼睛活動目標:1。了解眼睛對人的重要性 2.懂得如何保護眼睛 3。培養(yǎng)幼兒關心、幫助殘疾人的情感活動準備:錄音機、磁帶、眼罩與幼兒人數(shù)相等、三幅頭像畫、盲人圖片、一些關于保護眼睛的圖片、“眼睛”六個活動過程:一:引出主題1. 游戲:指五官轎是說一個五官的名稱,幼兒必須又快又準得指出來2看說貼得準?;顒?/p>

  • 北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們容易看出這段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大版初中數(shù)學九年級下冊三角函數(shù)的有關計算說課稿

    北師大版初中數(shù)學九年級下冊三角函數(shù)的有關計算說課稿

    設計意圖:最后是當堂訓練,目標檢測,這一環(huán)節(jié)要盡量讓學生獨立完成,使訓練高效,在學生訓練時教師要巡回輔導,重點關注課堂表現(xiàn)不太突出的學生,由于本課時內容多,訓練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓練的時間預估不足。四、教學思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設符合學生實際的問題情境,讓學生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學生的應用意識及分析問題解決問題的能力,培養(yǎng)了學生的數(shù)學建模能力及轉化的思維方法。2.充分相信學生并為學生提供展示自己的機會,課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學生形成積極主動的求知態(tài)度。

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊切線長定理教案

    北師大初中九年級數(shù)學下冊切線長定理教案

    (3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

  • 人教版高中數(shù)學選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(1)教學設計

    人教版高中數(shù)學選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(1)教學設計

    問題1. 用一個大寫的英文字母或一個阿拉伯數(shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?因為英文字母共有26個,阿拉伯數(shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.問題2.你能說說這個問題的特征嗎?上述計數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標準,根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;(2)分別計算各類號碼的個數(shù);(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學各有一些自己感興趣的強項專業(yè),如表,

  • 人教版高中數(shù)學選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(2)教學設計

    人教版高中數(shù)學選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(2)教學設計

    當A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.

  • 人教A版高中數(shù)學必修一不同增長函數(shù)的差異教學設計(1)

    人教A版高中數(shù)學必修一不同增長函數(shù)的差異教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學習了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學習的一次梳理和總結。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質,完成函數(shù)增長快慢的認識。既是對三種函數(shù)學習的總結,也為后續(xù)導數(shù)的學習做了鋪墊。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;3、在認識函數(shù)增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,探索數(shù)學。 a.數(shù)學抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;

  • 人教A版高中數(shù)學必修一不同函數(shù)增長的差異教學設計(2)

    人教A版高中數(shù)學必修一不同函數(shù)增長的差異教學設計(2)

    本節(jié)課在已學冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實上,這種差異正是不同類型現(xiàn)實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標1.掌握常見增長函數(shù)的定義、圖象、性質,并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質的比較,培養(yǎng)數(shù)學建模和數(shù)學運算等核心素養(yǎng).數(shù)學學科素養(yǎng)1.數(shù)學抽象:常見增長函數(shù)的定義、圖象、性質;2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學運算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學建模:通過由抽象到具體,由具體到一般的數(shù)形結合思想總結函數(shù)性質.重點:比較函數(shù)值得大小;難點:幾種增長函數(shù)模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。

  • 人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中數(shù)學選修3二項式系數(shù)的性質教學設計

    人教版高中數(shù)學選修3二項式系數(shù)的性質教學設計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教A版高中數(shù)學必修一函數(shù)的表示法教學設計(1)

    人教A版高中數(shù)學必修一函數(shù)的表示法教學設計(1)

    本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數(shù)的三種表示方法及其簡單應用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎń馕鍪椒āD象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應用;1.數(shù)學抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;

  • 人教A版高中數(shù)學必修一函數(shù)的表示法教學設計(2)

    人教A版高中數(shù)學必修一函數(shù)的表示法教學設計(2)

    課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學習,讓學生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應用.

  • 人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(2)

    人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(2)

    本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學學科素養(yǎng)1.數(shù)學抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學運算:求函數(shù)零點近似值;4.數(shù)學建模:通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用.

  • 人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(1)

    人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(1)

    《數(shù)學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應用,同時又為高中數(shù)學中函數(shù)與方程思想、數(shù)形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內的零點,從而求得方程的近似解. a.數(shù)學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;

  • 人教A版高中數(shù)學必修二向量的減法運算教學設計

    人教A版高中數(shù)學必修二向量的減法運算教學設計

    新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

  • 人教版高中數(shù)學選擇性必修二導數(shù)的四則運算法則教學設計

    人教版高中數(shù)學選擇性必修二導數(shù)的四則運算法則教學設計

    求函數(shù)的導數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導數(shù)的運算法則求導數(shù);(2)對于三個以上函數(shù)的積、商的導數(shù),依次轉化為“兩個”函數(shù)的積、商的導數(shù)計算.跟蹤訓練1 求下列函數(shù)的導數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數(shù)的導數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 三角形的有關證明 3 直角三角形教案教學設計

    三角形的有關證明 3 直角三角形教案教學設計

    從課程內容來看,本節(jié)課屬于“圖形與幾何”中“圖形的性質”部分。依據(jù)課標的要求,我從以下四個方面設定了課程目標,分別是:1。知識技能:(1)掌握判定直角三角形全等的“斜邊、直角邊”定理。(2)已知一直角邊和斜邊,能用尺規(guī)作出直角三角形。2。數(shù)學思考:(1)經(jīng)歷探索、猜想、證明的過程,進一步體會證明的必要性,發(fā)展推理能力和有條理的表達能力。(2)在探究過程中,滲透由特殊到一般的數(shù)學思想方法。3。問題解決:能利用直角三角形的全等解決有關問題。4。情感態(tài)度:通過學習,讓學生感受數(shù)學證明的嚴謹性,發(fā)展勇于質疑、嚴謹求實的科學態(tài)度。

上一頁123...515253545556575859606162下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。