提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

XX年高中返校國旗下講話稿

  • 人教版新課標高中物理必修1用牛頓運動定律解決問題(二)教案2篇

    人教版新課標高中物理必修1用牛頓運動定律解決問題(二)教案2篇

    觀察實驗視頻實驗驗證師:其實大家完全可以利用身邊的器材來驗證。實驗1、用彈簧秤掛上鉤碼,然后迅速上提和迅速下放?,F(xiàn)象:在鉤碼被迅速上提的一瞬間,彈簧秤讀數(shù)突然變大;在鉤碼被迅速下放的一瞬間,彈簧秤讀數(shù)突然變小。師:迅速上提時彈簧秤示數(shù)變大是超重還是失重?迅速下放時彈簧秤示數(shù)變小是超重還是失重?生:迅速上提超重,迅速下放失重。體會為何用彈簧秤測物體重力時要保證在豎直方向且保持靜止或勻速實驗2、學生站在醫(yī)用體重計上,觀察下蹲和站起時秤的示數(shù)如何變化?在實驗前先讓同學們理論思考示數(shù)會如何變化再去驗證,最后再思考。(1)在上升過程中可分為兩個階段:加速上升、減速上升;下蹲過程中也可分為兩個階段:加速下降、減速下降。(2)當學生加速上升和減速下降時會出現(xiàn)超重現(xiàn)象;當學生加速下降和減速上升時會出現(xiàn)失重現(xiàn)象;(3)出現(xiàn)超重現(xiàn)象時加速度方向向上,出現(xiàn)失重現(xiàn)象時加速度方向向下。完全失重

  • 人教版新課標高中物理必修1探究小車速度隨時間變化的規(guī)律教案2篇

    人教版新課標高中物理必修1探究小車速度隨時間變化的規(guī)律教案2篇

    三、作出速度-時間圖像(v-t圖像)1、確定運動規(guī)律最好辦法是作v-t圖像,這樣能更好地顯現(xiàn)物體的運動規(guī)律。2、x y x1 x2 y2 y1 0討論如何在本次實驗中描點、連線。(以時間t為橫軸,速度v為縱軸,建立坐標系,選擇合適的標度,把剛才所填表格中的各點在速度-時間坐標系中描出。注意觀察和思考你所描畫的這些點的分布規(guī)律,你會發(fā)現(xiàn)這些點大致落在同一條直線上,所以不能用折線連接,而用一根直線連接,還要注意連線兩側(cè)的點數(shù)要大致相同。)3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當中仍應該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標系中,直線的斜率

  • 人教版新課標高中物理必修1勻變速直線運動的位移與時間的關(guān)系教案2篇

    人教版新課標高中物理必修1勻變速直線運動的位移與時間的關(guān)系教案2篇

    一、教學目標1.知識與技能:(1)知道勻速直線運動的位移x=υt對應著 圖象中的矩形面積.(2)掌握勻變速直線運動的位移與時間關(guān)系的公式 ,及其簡單應用.(3)掌握勻變速直線運動的位移與速度關(guān)系的公式 ,及其簡單應用.2.過程與方法:(1)讓學生初步了解探究學習的方法.(2)培養(yǎng)學生運用數(shù)學知識-----函數(shù)圖象的能力.(3)培養(yǎng)學生運用已知結(jié)論正確類比推理的能力.3.情感態(tài)度與價值觀:(1)培養(yǎng)學生認真嚴謹?shù)目茖W分析問題的品質(zhì).(2)從知識是相互關(guān)聯(lián)、相互補充的思想中,培養(yǎng)學生建立事物是相互聯(lián)系的唯物主義觀點.(3)培養(yǎng)學生應用物理知識解決實際問題的能力.二、教學重點、難點1.教學重點及其教學策略:重點:(1)勻變速直線運動的位移與時間關(guān)系的公式 及其應用.(2)勻變速直線運動的位移與速度關(guān)系的公式 及其應用.教學策略:通過思考討論和實例分析來加深理解.

  • 人教版新課標高中物理必修1速度變化快慢的描述─加速度教案2篇

    人教版新課標高中物理必修1速度變化快慢的描述─加速度教案2篇

    【設(shè)計思路】新課程十分強調(diào)科學探究在科學課程中的作用,應該說科學探究是這次課程改革的核心。我覺得:科學探究不一定是要讓學生純粹地通過實驗進行探究,應該說科學探究是一種科學精神,學生只要通過自己的探索和體驗,變未知為已知,這樣的教學活動也是科學探究。本節(jié)課是概念教學課,讓學生純粹地通過實驗進行探究是不太合適的。但通過學生自己的探索和體驗,變未知為已知還比較合適。本節(jié)課的設(shè)計就是基于這樣的出發(fā)點,在引出加速度的概念時低臺階,步步深入,充分激活學生的思維,是學生思維上的探究。通過復習前邊速度時間圖像,從而得到從圖像上得到加速度的方法,為加深加速度概念和相關(guān)知識的理解有配套了相應練習題目,做到強化練習的目的。【教學目標】知識與技能1.理解加速度的意義,知道加速度是表示速度變化快慢的物理量.知道它的定義、公式、符號和單位,能用公式a=△v/△t進行定量計算.2.知道加速度與速度的區(qū)別和聯(lián)系,會根據(jù)加速度與速度的方向關(guān)系判斷物體是加速運動還是減速運動.

  • 人教版新課標高中物理必修1探究小車速度隨時間變化的規(guī)律教案2篇

    人教版新課標高中物理必修1探究小車速度隨時間變化的規(guī)律教案2篇

    3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當中仍應該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標系中,直線的斜率四、實踐與拓展例1、在探究小車速度隨時間變化規(guī)律的實驗中,得到一條記錄小車運動情況的紙帶,如圖所示。圖中A、B、C、D、E為相鄰的計數(shù)點,相鄰計數(shù)點的時間間隔為T=0.1s。⑴根據(jù)紙帶上的數(shù)據(jù),計算B、C、D各點的數(shù)據(jù),填入表中。

  • 人教版新課標高中物理必修1用牛頓運動定律解決問題(一)教案2篇

    人教版新課標高中物理必修1用牛頓運動定律解決問題(一)教案2篇

    (四)實例探究☆力和運動的關(guān)系1、一個物體放在光滑水平面上,初速為零,先對物體施加一向東的恒力F,歷時1秒,隨即把此力改變?yōu)橄蛭?,大小不變,歷時1秒鐘,接著又把此力改為向東,大小不變,歷時1秒鐘,如此反復只改變力的方向,共歷時1分鐘,在此1分鐘內(nèi)A.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置之東B.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置C.物體時而向東運動,時而向西運動,在1分鐘末繼續(xù)向東運動D.物體一直向東運動,從不向西運動,在1分鐘末靜止于初始位置之東☆牛頓運動定律的應用2、用30N的水平外力F,拉一靜止放在光滑的水平面上質(zhì)量為20kg的物體,力F作用3秒后消失,則第5秒末物體的速度和加速度分別是A.v=7.5m/s,a=l.5m/s2B.v=4.5m/s,a=l.5m/s2C.v=4.5m/s,a=0D.v=7.5m/s,a=0

  • 人教版新課標高中物理必修1勻變速直線運動的速度與時間的關(guān)系教案2篇

    人教版新課標高中物理必修1勻變速直線運動的速度與時間的關(guān)系教案2篇

    一、設(shè)計思想通過本節(jié)教學,不但要使學生認識掌握勻變速直線運動的規(guī)律,而且要通過對這問題的研究,使學生了解和體會物理學研究問題的一個方法,圖象、公式、以及處理實驗數(shù)據(jù)的方法等。這一點可能對學生更為重要,要通過學習過程使學生有所體會。本節(jié)在內(nèi)容的安排順序上,既注意了科學系統(tǒng),又注意學生的認識規(guī)律。講解問題從實際出發(fā),盡量用上一節(jié)的實驗測量數(shù)據(jù)。運用圖象這種數(shù)學工具,相對強調(diào)了圖象的作用和要求。這是與以前教材不同的。在現(xiàn)代生產(chǎn)、生活中,圖象的運用隨處可見,無論學生將來從事何種工作,掌握最基本的應用圖象的知識,都是必須的。學生在初學時往往將數(shù)學和物理分割開來,不習慣或不會將已學過的數(shù)學工具用于物理當中。在教學中應多在這方面引導學生。本節(jié)就是一個較好的機會,將圖象及其物理意義聯(lián)系起來。

  • 人教版新課標高中物理必修1勻變速直線運動的位移與時間的關(guān)系教案2篇

    人教版新課標高中物理必修1勻變速直線運動的位移與時間的關(guān)系教案2篇

    一、教學目標1.知識與技能:(1)知道勻速直線運動的位移x=υt對應著 圖象中的矩形面積.(2)掌握勻變速直線運動的位移與時間關(guān)系的公式 ,及其簡單應用.(3)掌握勻變速直線運動的位移與速度關(guān)系的公式 ,及其簡單應用.2.過程與方法:(1)讓學生初步了解探究學習的方法.(2)培養(yǎng)學生運用數(shù)學知識-----函數(shù)圖象的能力.(3)培養(yǎng)學生運用已知結(jié)論正確類比推理的能力.3.情感態(tài)度與價值觀:(1)培養(yǎng)學生認真嚴謹?shù)目茖W分析問題的品質(zhì).(2)從知識是相互關(guān)聯(lián)、相互補充的思想中,培養(yǎng)學生建立事物是相互聯(lián)系的唯物主義觀點.(3)培養(yǎng)學生應用物理知識解決實際問題的能力.二、教學重點、難點1.教學重點及其教學策略:重點:(1)勻變速直線運動的位移與時間關(guān)系的公式 及其應用.(2)勻變速直線運動的位移與速度關(guān)系的公式 及其應用.教學策略:通過思考討論和實例分析來加深理解.

  • 人教A版高中數(shù)學必修一二次函數(shù)與一元二次方程、不等式教學設(shè)計(2)

    人教A版高中數(shù)學必修一二次函數(shù)與一元二次方程、不等式教學設(shè)計(2)

    三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學生能夠運用二次函數(shù)及其圖像,性質(zhì)解決實際問題. 3. 滲透數(shù)形結(jié)合思想,進一步培養(yǎng)學生綜合解題能力。數(shù)學學科素養(yǎng)1.數(shù)學抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學運算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實際問題;5.數(shù)學建模:運用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(1)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(2)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.

  • 人教A版高中數(shù)學必修二有限樣本空間與隨機事件事件的關(guān)系和運算教學設(shè)計

    人教A版高中數(shù)學必修二有限樣本空間與隨機事件事件的關(guān)系和運算教學設(shè)計

    新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復進行;(2)試驗的所有可能結(jié)果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不確定出現(xiàn)哪個結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。

  • 空間向量及其運算的坐標表示教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    空間向量及其運算的坐標表示教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比橢圓幾何性質(zhì)的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(zhì)(2)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 拋物線及其標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    拋物線及其標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學習拋物線及其標準方程在經(jīng)歷了橢圓和雙曲線的學習后再學習拋物線,是在學生原有認知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應用.這樣的安排不僅體現(xiàn)出《課程標準》中要求通過豐富的實例展開教學的理念,而且符合學生從具體到抽象的認知規(guī)律,有利于學生對概念的學習和理解.坐標法的教學貫穿了整個“圓錐曲線方程”一章,是學生應重點掌握的基本數(shù)學方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學

  • 雙曲線的簡單幾何性質(zhì)(2)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼担蟪龃穗p曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 雙曲線及其標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線及其標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.

  • 橢圓的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

上一頁123...331332333334335336337338339340341342下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!