2、理解目標(1)發(fā)展的普遍性;(2)事物發(fā)展的道路和方向;事物發(fā)展的形式;3、運用目標(1)根據(jù)所學知識,結(jié)合相關(guān)原理,分析說明自然界、人類社會是無限發(fā)展的。了解唯物辯證法是關(guān)于世界普遍聯(lián)系的科學,又是關(guān)于世界永恒發(fā)展的科學。(2)根據(jù)有關(guān)原理,理解事物發(fā)展的前途是光明的,道路是曲折的,說明新事物必然戰(zhàn)勝舊事物是宇宙間不可抗拒的規(guī)律。(3)結(jié)合古人有關(guān)的名言警句,組織學生討論生活和學習中的具體問題,分析量變和質(zhì)變的辨證統(tǒng)一關(guān)系對于生活和實踐的意義。二、能力目標1、通過學習,培養(yǎng)學生正確認識事物發(fā)展的方向、發(fā)展的道路和發(fā)展的形式,用發(fā)展的眼光看問題、分析問題的能力。2、使學生初步具有運用科學發(fā)展觀觀察、分析和處理自然和社會現(xiàn)象的能力。3、使學生初步形成正確對待生活中的失敗與成功、困難挫折與理想目標之間關(guān)系的能力。
7、人總是按照自己對周圍世界和人生的理解做事。有人認為命由天定,因而身處困境只是消極等待、逆來順受;有人認為人定勝天,因而在困難面前積極奮爭、不屈不撓。以上材料說明( )A哲學源于人們對實踐的追問和對世界的思考B世界觀決定方法論,方法論體現(xiàn)著世界觀C哲學不等于自發(fā)的世界觀D哲學是關(guān)于世界觀的學說8、世界觀和方法論的關(guān)系是()A世界觀和方法論相互決定B方法論決定世界觀,世界觀體現(xiàn)方法論 C世界觀決定方法論,方法論體現(xiàn)世界觀 D世界觀和方法論相互影響,相互決定9、下列關(guān)于哲學、世界觀、具體知識之間聯(lián)系的正確說法是()A哲學是關(guān)于世界觀和具體知識的統(tǒng)一B哲學就是科學的世界觀和具體知識C哲學是關(guān)于世界觀的學說,是具體知識的概括和總結(jié)D哲學決定世界觀,世界觀決定具體知識10、下列對哲學的認識,不正確的是()A哲學是關(guān)于世界觀的學說B哲學是世界觀和方法論的統(tǒng)一C哲學是理論化、系統(tǒng)化、科學化的世界觀D哲學是對具體知識的概括和總結(jié)
二、分析題基于非典型肺炎防治的需要,武漢大學和中國科學院微生物研究所,集中優(yōu)秀人才和先進的儀器設(shè)備,以科學的理論為指導,運用現(xiàn)代的知識與技術(shù)手段,對SARS病毒進行深入細致的研究。2003年5月,他們聯(lián)合研制出抗擊SARS病毒侵入細胞的多肽藥物。經(jīng)科學試驗證明,它可以阻斷SARS病毒侵入人體細胞,具有預防和治療兩種功效。這些藥物的發(fā)明在非典型肺炎的預防和治療發(fā)揮著重要的作用。上述材料體現(xiàn)了辯證唯物主義認識論的哪些觀點?答案提示:體現(xiàn)了實踐是認識的來源、實踐是認識發(fā)展的動力、實踐是檢驗認識的真理性的唯一標準、實踐是認識的目的和歸宿、認識對實踐具有反作用等辯證唯物主義認識論的觀點。三、辨析題1、“仁者見仁,智者見智”的說法否定了真理的客觀性答案提示:(1)此觀點錯誤。(2)“仁者見仁,智者見智”是說對同一事物不同的人有不同的見解。
二、分析題20世紀9 0年代以來,世界各國把發(fā)展循環(huán)經(jīng)濟、建立循環(huán)型社會看作是實施可持續(xù)發(fā)展戰(zhàn)略的重要途徑和實現(xiàn)方式。傳統(tǒng)經(jīng)濟是一種“資源―產(chǎn)品―廢棄物”單向流動的線形經(jīng)濟。循環(huán)經(jīng)濟倡導的是一種與環(huán)境和諧的經(jīng)濟發(fā)展模式,它要求把經(jīng)濟活動組織成一個“資源-產(chǎn)品-再生資源”的反復循環(huán)流程,做到生產(chǎn)和消費“污染排放量最小化、廢物資源化和無害化”,以最小的成本獲得最大的經(jīng)濟效益和生態(tài)效益。分析說明循環(huán)經(jīng)濟所倡導的經(jīng)濟發(fā)展模式是如何體現(xiàn)聯(lián)系觀點的。【答案提示】(1)聯(lián)系具有普遍性和客觀性。循環(huán)經(jīng)濟是資源、產(chǎn)品、再生資源相互聯(lián)系的有機統(tǒng)一整體,它體現(xiàn)了聯(lián)系的普遍性和客觀性。(2)聯(lián)系具有多樣性?!百Y源-產(chǎn)品-再生資源”的反復循環(huán)體現(xiàn)了原因和結(jié)果在一定條件下可以相互轉(zhuǎn)化;體現(xiàn)了三者之間的內(nèi)部聯(lián)系、外部聯(lián)系等。(3)循環(huán)經(jīng)濟表明人們可以根據(jù)事物的固有聯(lián)系,改變事物的狀態(tài),建立新的具體聯(lián)系,以實現(xiàn)經(jīng)濟效益、生態(tài)效益和社會效益的統(tǒng)一。
教學重點難點:1、哲學與時代的關(guān)系(重點)2、馬克思主義哲學是科學的世界觀和方法論(重點)3、實踐的觀點在馬克思主義哲學中占有重要的地位和作用(重點、難點)4、馬克思主義中國化的三大理論成果(重點)教學課時安排:3課時【導入新課】德國人和中國人一同坐火車從德國的法蘭克福去巴黎。途中上來一位客人,這位客人將手里端著的魚缸放在空座上。德國人開始發(fā)問:“您能告訴我這魚的名稱嗎?它在生物學上屬于什么類別?它在科學上的意義又是什么?”中國人則問:“這種魚是紅燒好吃,還是清蒸更好吃一點?”這一故事體現(xiàn)了中西方思維方式的差異,這一差異也折射出中西方哲學上的差異。西方哲學起源于古希臘哲學,表現(xiàn)為對各種現(xiàn)象之后的原因的關(guān)注和對確定性的追求,強調(diào)理性認知。中國哲學主要是儒家哲學,主要集中在政治倫理方面,表現(xiàn)為對人的關(guān)懷和規(guī)范,強調(diào)感性體驗。中西方哲學為何出現(xiàn)這樣的差異?哲學與政治、經(jīng)濟有怎樣的關(guān)系?
在數(shù)學上,0這個數(shù)是解決記數(shù)和進位問題而引進的概念,由于它不能表示實在的東西,很長時間人們不把它看作是一個數(shù)。認為0是無,是對有的否定。從唯物辯證法的觀點看,這種否定不是形而上學的簡單否定,而是具有豐富內(nèi)容的辨證否定。辨證的否定是發(fā)展的環(huán)節(jié)。0是從無到有的必經(jīng)之路,是連接無和有的橋梁。0又是正數(shù)和負數(shù)之間的界限,它既否定了任何正數(shù),也否定了任何負數(shù),是唯一的中性數(shù)。但它又是聯(lián)結(jié)正數(shù)和負數(shù)的中間環(huán)節(jié)。沒有0,負數(shù)就過渡不到正數(shù)去,正數(shù)也休想發(fā)展到負數(shù)來。數(shù)學中的0是對任何定量的否定。如果沒有這一否定,任何量的發(fā)展都無從談起。這個否定不是一筆勾銷,而是揚棄。因為它克服了任何定量的有限性,成為其發(fā)展的環(huán)節(jié)。在現(xiàn)實生活中,0作為辨證的否定,也體現(xiàn)出聯(lián)系和發(fā)展的性質(zhì)。如0度不是沒有溫度,而是非常確定的溫度。
3、運用目標(1)運用所學知識說明世界真正的統(tǒng)一性就在于它的物質(zhì)性(2)運用所學知識及相關(guān)哲學原理,分析作為物質(zhì)觀發(fā)展的第一個基本階段,古代樸素唯物主義物質(zhì)觀的局限性,從分析論證中加深對辯證唯物主義物質(zhì)觀的科學性的理解(3)列舉實際事例,結(jié)合相關(guān)哲學原理,討論如果只承認運動的絕對性,而否認靜止的相對性會導致的結(jié)果,分析馬克思主義哲學為什么要堅持絕對運動與相對靜止的統(tǒng)一(4)世界是有規(guī)律的,規(guī)律是普遍的。列舉實際事例,分析任何事物都有其內(nèi)在的規(guī)律性,規(guī)律是客觀的,是不以人的意志為轉(zhuǎn)移的,但是人在規(guī)律目前并不是無能為力的二、能力目標1、培養(yǎng)學生自覺運用馬克思主義的物質(zhì)觀分析宇宙間一切事物及現(xiàn)象的能力2、鍛煉學生理論聯(lián)系實際的能力,培養(yǎng)學生正確認識世界的本質(zhì),并能夠自覺地按照客觀規(guī)律辦事的能力
【導入新課】2005年10月17日凌晨,5天前從酒泉衛(wèi)星發(fā)射中心起航的“神舟”六號飛船,在平安飛行115個小時32分后重返神州,緩緩降落在內(nèi)蒙古四子王旗主著陸場的草地上。我國首次真正意義上有人參與的空間飛行試驗取得圓滿成功。 當費俊龍和聶海勝先后自主出艙,面帶勝利的微笑,現(xiàn)場參試人員歡呼雀躍,億萬中華兒女為之自豪,幸福寫在每個人的臉上。神六飛行是一次非常完美的飛行任務(wù),又一次讓載人航天精神“從地面升到天空,從天空安全返回”。偉大的事業(yè)孕育偉大的精神。新一代航天人在攀登科技高峰的偉大征程中,以特有的崇高境界、頑強意志和杰出智慧,鑄就了載人航天精神,這就是特別能吃苦、特別能戰(zhàn)斗、特別能攻關(guān)、特別能奉獻的精神。【思考討論】“偉大的事業(yè)孕育偉大的精神”體現(xiàn)怎樣的哲學道理?我國為什么要提倡發(fā)揚“特別能吃苦、特別能戰(zhàn)斗、特別能攻關(guān)、特別能奉獻”的載人航天精神?(人具有主觀能動性)
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
知識與技能1.了解大牧場放牧業(yè)和乳畜業(yè)兩種農(nóng)業(yè)地域類型及其分布。2.通過學習大牧場放牧業(yè),學會分析農(nóng)業(yè)區(qū)位因素,訓練讀圖分析能力。3.掌握大牧場放牧業(yè)在經(jīng)營方式、商品化、專業(yè)化、經(jīng)濟效益等方面的特點。4.解西歐乳畜業(yè)的形成因素。過程 與方法1.通過對潘帕斯草原大牧場放牧業(yè)區(qū)位因素的分析,學會歸納大牧場放牧業(yè)的區(qū)位條件。2.把西歐乳畜業(yè)和潘帕斯草原大牧場放牧業(yè)的區(qū)位條件作比較。情感態(tài)度與價值觀1.自然條件是農(nóng)業(yè)地域類型形成的條件,人類必須尊重自然規(guī)律,才能天人合一。2.人文條件也越來越大地影響到農(nóng)業(yè)的區(qū)位選擇,事物是發(fā)展的,不能用靜止的觀點看待問題。【教學重點】1.理解大牧場放牧業(yè)和乳畜業(yè)兩類農(nóng)業(yè)地域類型的區(qū)位因素。2.利用圖表資料分析農(nóng)業(yè)區(qū)位因素的能力。
1.了解我國城市等級劃分的標準,知道不同國家和地區(qū)城市等級劃分的標準是不同的。2.了解不同的城市等級其城市地域結(jié)構(gòu)不同,提供的服務(wù)種類和服務(wù)范圍是不同的。聯(lián)系城市地域結(jié)構(gòu)的有關(guān)理論,說明不同規(guī)模城市服務(wù)功能的差異。3.了解不同等級城市服務(wù)范圍的嵌套理論,了解不同等級城市空間分布特點。教學重點:1.了解我國城市等級劃分的標準2.了解不同的城市等級其城市地域結(jié)構(gòu)不同,提供的服務(wù)種類和服務(wù)范圍是不同的。教學難點::不同等級城市服務(wù)范圍的嵌套理論教具準備:多媒體教學方法:比較分析法、圖示法、講述法、列表對比法教學過程:第一課時導入新課:我們生活在不同的城市,如廣州、佛山、西樵等,我們知道,這些城市有大小之分,也就是說城市等級是是不同的,那么城市的等級是如何劃分的呢?不同等級城市的服務(wù)功能如何呢?這就是我們今天要探討的第二節(jié)
知識目標1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標1.讀圖分析礦產(chǎn)資源與工業(yè)部門之間的聯(lián)系,培養(yǎng)學生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應(yīng)因地制宜。2.聯(lián)系實際,了解當?shù)貍鹘y(tǒng)工業(yè)發(fā)展狀況,為適應(yīng)當今世界經(jīng)濟發(fā)展狀況,應(yīng)有哪些改善措施,培養(yǎng)學生的創(chuàng)新能力。德育目標1.通過了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點看待傳統(tǒng)工業(yè)區(qū)的改造,適應(yīng)世界發(fā)展潮流。2.中國已經(jīng)“入世”,我們應(yīng)用辯證唯物主義觀點分析我國傳統(tǒng)工業(yè)今后遇到的機遇和挑戰(zhàn)。
【教學重點】1.利用農(nóng)業(yè)區(qū)位因素分析的方法,學習水稻種植業(yè)和商品谷物農(nóng)業(yè)的特點;2.對比水稻種植業(yè)和商品谷物農(nóng)業(yè)兩種農(nóng)業(yè)生產(chǎn)地域類型,理解在農(nóng)業(yè)地域類型形成的過程中,各個農(nóng)業(yè)區(qū)位因素對其發(fā)展的影響。【教學難點】1.學習農(nóng)業(yè)區(qū)位因素分析的方法,分析形成農(nóng)業(yè)地域類型的主導因素;2.結(jié)合文字資料與圖示資料的閱讀,初步掌握提取地理信息的基本方法?!窘虒W方法】自主探究與講議結(jié)合【教學課時】1課時【教學過程】(導入新課)同學們,通過前面一節(jié)課的學習,我們已經(jīng)樹立了農(nóng)業(yè)區(qū)位因素的基本理論,并且有了農(nóng)業(yè)地域類型的一些基本認識,學習了種植業(yè)和畜牧業(yè)兼有的澳大利亞的混合農(nóng)業(yè),這一節(jié)我們繼續(xù)學習兩種以種 植業(yè)為主的農(nóng)業(yè)地域類型——季風水田農(nóng)業(yè)和商品谷物農(nóng)業(yè)。
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。