三、鞏固練習,拓展應用練習是學生領悟知識,形成技能,發(fā)展智力的重要手段,我遵循“由淺入深,循序漸進”的原則設計了以下不同層次的練習。1、基本練習自主練習第1題填一填,借助直觀圖,鞏固分數乘法的意義和計算方法。2、提高練習自主練習2、4題。本題的設計,目的是使學生除了掌握基本的數學知識和技能外,初步學會從數學的角度去觀察事物、思考問題,同時,也讓學生感受到生活中處處有數學,從而激發(fā)對數學的興趣,以及學好數學的愿望。四、課堂小結,升華認識引導學生回憶總結:這節(jié)課你們都知道了些什么?你有哪些收獲?這節(jié)課你表現得怎樣?等等,這樣的小結有利于學生鞏固本節(jié)課的重點,獲得成功的體驗,激發(fā)學習的熱情。五、板書設計:簡單明了,能系統(tǒng)地反映出本課的重、難點。有利于學生形成一定的知識網絡。都起到了“畫龍點睛”的作用。
1、橫著看乘法口訣表的規(guī)律。(1)第幾行就是幾的乘法口訣。(2)幾的口訣就有幾句。(3)第一句都從一開始,幾的口訣到幾為止。2、豎著看乘法口訣表的規(guī)律。(1)從第一豎行到第九豎行的口訣句數是從9——1的順序出現的。(2)第一豎行是“一個幾”,第二豎行是“兩個幾”……第幾豎行就從“幾”開始。(3)每一豎行都是到9為止。歸納出乘法口訣表規(guī)律后,我讓集體分別按橫行、豎行各讀一遍口訣表。增加學生記憶乘法口訣表。第四環(huán)節(jié):利用教學內容滲透思想教育。激發(fā)學生熱愛科學的激情。我向學生說明:乘法口訣在我國兩千多年前就有了。那時是從“九九八十一”開始的,所以也叫“九九歌”。七百多年前才倒過來,從“一一得一”開始。第五環(huán)節(jié):布置作業(yè)。用自己喜歡的方式背誦乘法口訣表。
在教學中我力求做到以下幾點一、體現“活動性”,讓學生在活動中體驗?!缎抡n標》明確指出:“讓學生在具體的數學活動中體驗數學知識?!币虼?,我在新授部分以學生喜歡摸子活動開始,以期激發(fā)他們學習的熱情和興趣,使學生在活動過程中感知“一定”、“可能”、“不可能”,進而能判斷生活與數學中的“一定”、“可能”、“不可能”這三種情況。并能用自己的語言描述事情發(fā)生的三種情況;(然而在課堂中,讓學生把這三個詞語放在一起例舉數學與生活中的實例吧,學生說起來還是有一定難度的,所以在教學中我只有通過自己先舉例在讓學生說,這時學生才能說出例子來。)最后又讓學生小組合作學習感知體驗可能性是有大小的,達到鞏固與應用的目的。
教學內容:統(tǒng)一長度單位教材分析:通過量一量說一說想一想等活動切實感受到統(tǒng)一長度單位的必要性及其對生活的重要意義。學情分析:在上冊“比一比”中學了比較物體長短的基礎上學習的。盡管學生有這方面的經驗和基礎,但是長度單位的操作和應用是多種知識的綜合,對小孩來說還是比較難的,在教學中應根據學生特點,注重實踐性,培養(yǎng)觀察力。教學目標:1、讓學生通過量一量、說一說的活動,體驗統(tǒng)一長度單位的過程,感受統(tǒng)一長度單位的必要性,為厘米、米的學習打下基礎。2、讓學生用不同實物作標準進行測量,培養(yǎng)學生的動手、思考能力,以及合作、估測的意識。3、通過不同的測量活動,讓學生體驗測量活動的過程,感受學習與生活的聯系,體驗學習數學的樂趣。
三、說教學理念:通過觀察、猜測及動手操作實驗等方法,向學生滲透有序的數學思想。四、說教學過程:一、創(chuàng)設情境、激趣導入。小朋友們喜歡什么樣的球類運動呢?讓學生各抒已見。當有人說到足球時。老師馬上引到學校冬季運動會,我們三年級3個班的比賽情況,結果我們班得了第一。那我們班比賽了幾場?學生回答兩場。三個班比賽,每兩個班比賽一場,那一共要比賽多少場呢?四人小組合作完成。然后匯報,并說理由。二.動手實踐,自主探究1.2002年世界杯足球C組比賽有幾國家?是哪幾個國家?讓學生發(fā)表意見。他們說不出,老師再告訴他們。2.如果這四個隊每兩個隊踢一場球,一共要踢多少場?(課件演示主題圖)3.讓學生大膽說一說、猜一猜。4.四人小組用學具卡片擺一擺、討論討論。
●教學內容:教科書第27頁的內容?!窠虒W目標:①通過創(chuàng)設具體的情境,使學生初步學會加法的驗算,并通過加法驗算方法的交流、讓學生體會算法的多樣化。②培養(yǎng)學生探索合作交流的意識和能力。③讓學生用所學到的驗算知識去解決生活中的問題,體會用數學的樂趣。●教具準備:老師準備掛圖或課件。●教學過程:創(chuàng)設情境、導入新課。師:同學們,你們與爸爸、媽媽去超市買過東西嗎?生:互相說說,再請同學發(fā)表意見。師:(掛圖1)我們來看掛圖,小明和媽媽去超市買東西,從圖1中你看到了什么?生1:從圖1中我看到了小明媽媽買了一套135元的運動服和一雙48元的運動鞋。生2:從圖1中我看到小明媽媽給了售貨員200元。生3:要知道一套運動服和一雙運動鞋一共要多少元?應用加法計算。師:全班動手計算。板書:135+48=183(元)
教材分析:例4是讓學生判斷媽媽要買三種生活用品,帶100元錢夠不夠。可以結合這種生活中經常出現的情景,使學生認識到,在日常生活中,有時需要進行精確計算,有時根據實際的需要只要估算出大致的結果就可以了,便于學生更完整、全面、深刻地認識數學的功能。估算的策略是多樣化的,可以用連加,也可以用連減,還可以用加減混合,中間包含了加法的估算和減法的估算。教材上呈現了兩種估算策略,有一名學生用連減的方法先估算出100-28大約得70,再估算出70-43大約得30,從而判斷用剩下的錢買水杯還夠,兩步計算中都運用了估算。另一名學生先用加法估算出28+43大約得70,再口算出大約還剩30元,從而得出買水杯還夠的結論,第一步計算運用了估算,第二步是精確計算。由于每個個體的思維方式和思維水平不同,所采取的估算策略也是不同的,教材上除了提供這兩種估算策略以外,還有一名學生提出問題:“還可以怎樣算呢?”提示教師在教學時讓學生靈活采用適合自己的估算方法,體現了算法多樣化的思想。
出示計算錯誤的學生算式,讓學生進行判別。說說為什么錯,錯在哪里。之前學生基本掌握了加法的計算法則,在此基礎上先讓學生嘗試計算。讓學生運用知識遷移的方法,類推出兩位數加兩位數連續(xù)進位的計算方法。再采用討論、比較等方式學習。這樣充分發(fā)揮知識遷移的效力,又可體現學生學習的自主性。2、嘗試練習解決三個班級一共捐款多少元?由于1班和2班共捐了96元已求出,所以只要計算96+58。這題先讓學生獨立完成后在小組中說說你是怎么算的,通過向別人表達計算的過程來達到進一步掌握連續(xù)進位加法的方法,又培養(yǎng)學生的口頭表達能力。(三)鞏固練習練習可以讓學生鞏固所學的知識,并對所學知識有進一步地提升,讓學生學有所用。
本節(jié)課的內容是課程標準人教版數學三年級上“萬以內的加法和減法(二)”中加法的第二課時,是在學生掌握“個位相加滿十,向十位進1”,兩位數加兩位數和是三位數的連續(xù)進位加法的基礎上進行教學的。是學生學習筆算加法的難點。二、說教學目標根據《課標》提出的“加強估算,提倡算法多樣化”的要求,本課把教學目標定位于下:1.使學生進一步理解加法計算法則,回筆算三位數的連續(xù)進位加法。2.學會結合具體情境進行估算。本節(jié)課的重點是用豎式計算以及對“哪一位上的數相加滿十,就要向前一位進1”的理解,這也是本課的難點。三、說教法與學法注意以學生已有知識為起點,留給學生充裕的時間,充分體現學生自主探究的過程,在學習中讓學生進行自主探索、討論和交流。在交流中,教師適當引導,讓學生充分發(fā)表意見和看法,決不能包辦代替,同時在學生的獨立思考和自主探究的基礎上進行合作與交流在練習中注意提出估算的要求。
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現宣布,可能發(fā)現除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數冪的乘法【類型一】 底數為單項式的同底數冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據同底數冪的乘法法則進行計算即可;(2)先算乘方,再根據同底數冪的乘法法則進行計算即可;(3)根據同底數冪的乘法法則進行計算即可.
【類型四】 含整數指數冪、零指數冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據有理數的乘方、零指數冪、負整數指數冪及絕對值的性質計算出各數,再根據實數的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數的乘方、零指數冪、負整數指數冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數冪的除法法則:同底數冪相除,底數不變,指數相減.2.零次冪:任何一個不等于零的數的零次冪都等于1.即a0=1(a≠0).3.負整數次冪:任何一個不等于零的數的-p(p是正整數)次冪,等于這個數p次冪的倒數.即a-p=1ap(a≠0,p是正整數).從計算具體問題中的同底數冪的除法,逐步歸納出同底數冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數學學習的魅力,為以后的學習奠定基礎
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結:此題將現實生活中的事件與數學思想聯系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數列不等式―→解不等式―→結合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯系.
方法總結:本題結合三角形內角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.
【類型三】 分式方程無解,求字母的值若關于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結:分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數,分式方程無解不但包括使最簡公分母為0的數,而且還包括分式方程化為整式方程后,使整式方程無解的數.三、板書設計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產生增根;(2)分式方程檢驗的方法.
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數1.二次函數的概念2.從實際問題中抽象出二次函數解析式二次函數是一種常見的函數,應用非常廣泛,它是客觀地反映現實世界中變量之間的數量關系和變化規(guī)律的一種非常重要的數學模型.許多實際問題往往可以歸結為二次函數加以研究.本節(jié)課是學習二次函數的第一節(jié)課,通過實例引入二次函數的概念,并學習求一些簡單的實際問題中二次函數的解析式.在教學中要重視二次函數概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數解析式的過程,體驗用函數思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數關系式(1)和(2),提出問題讓學生思考回答;(1)函數關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數y取得最大值。2.二次函數定義:形如y=ax2+bx+c (a、b、、c是常數,a≠0)的函數叫做x的二次函數, a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.
解析:①以O為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學習了有關尺規(guī)作圖的相關知識,課堂教學內容以學生動手操作為主,在學生動手操作的過程中要鼓勵學生大膽動手,培養(yǎng)學生的動手能力和書面語言表達能力
方法總結:判斷軸對稱的條數,仍然是根據定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據軸對稱的意義,經過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質疑,促使學生思考與發(fā)現,形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
解析:根據銳角三角函數的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.