一、說教材《質點 參考系和坐標系》是人教版普通高中物理必修一第一章第一課的內容。本節(jié)課主要介紹了質點、參考系、坐標系的基本概念。通過本節(jié)課的學習為進一步學習后續(xù)課程起到了鋪墊的作用。根據上述教材的結構和內容分析,又考慮到高一年級學生的認知結構及其心理特征,我制定了以下三維教學目標:1、知識與技能:知道質點的概念及條件;知道參考系的概念及作用;掌握坐標系的簡單應用。2、過程與方法:促進學生自主學習,讓學生積極參與、樂于探究、勇于實驗、勤于思考,培養(yǎng)學生的科學探究能力。3、情感態(tài)度與價值觀:通過質點 參考系和坐標系的學習,使學生了解生活與物理的關系,讓學生學會用科學的思維去看待事物。根據普通高中物理課程標準,并在吃透教材的基礎上,我確定了以下教學重點和難點:教學重點:質點概念的建立。只有掌握了這一點才能更加準確的理解和掌握后續(xù)教材的相關內容。
學生回答的方法多樣,讓各小組根據自己討論出來的方法對自己實驗出來的紙帶進行數(shù)據處理,并求出加速度,并且將多條紙帶都進行處理,同時提醒學生對紙帶的選擇。接著,我會用多媒體展示重物下落實驗打出來的紙帶,用表格列出一段紙帶上各點的瞬時速度,準確畫出v-t圖像,求出加速度,將結果給予學生的結果作對比,確定出正確結論。最后讓學生分析總結:自由落體運動是初速度為零的勻加速直線運動,而且,多條紙帶算出來的加速度的數(shù)值都接近相等,即加速度在實驗誤差允許范圍內是相等的。引出重力加速度,介紹概念、方向及大小。(強調“同一地點”,讓學生閱讀教材中一些地點的重力加速度,可以了解重力加速度的大小與緯度有關,緯度越大加速度越大)。學習了重力加速度后讓學生根據之前學習的勻變速直線運動公式推導出自由落體的運動規(guī)律。設計意圖:讓學生在學習過程中的主體地位和自主觀能動性得到充分發(fā)揮,取長補短,培養(yǎng)了學生的實驗操作能力,又使學生對自由落體運動的性質有深刻的印象,從而解決了本節(jié)課第二個難點。
四.設計反思我在設計本課時,希望通過情境的創(chuàng)設充分再現(xiàn)歷史,并利用多媒體輔助教學,破重點、化難點,讓學生主動參與到學習過程中,從而突破狹小的教室空間,讓學生真正做到感知歷史,立足現(xiàn)實,展望未來。自主,交流、合作、探究是課程改革中著力倡導的新型學習方式。課堂教學中如何開展小組合作的探究學習存在著很多困難,首先是課堂教學時間有限,如何體現(xiàn)面向全體,給每個學生以機會?再次,歷史問題的討論只能依托于史料才能使討論不淪為空談,課堂上通過網絡提供大量的史料(文字、圖片或其他),勢必不能有充分時間讓學生閱讀分析。如何解決這些問題呢?措施一:要形成較固定的歷史學習合作小組。選定一位同學擔任組長,負責協(xié)調措施二:要設置有利于學生探究的問題情境措施三:要把課堂教學與課外學習結合起來。在課前就印發(fā)相關的材料,或引導學生去查閱相關的資料,讓學生有個充分的閱讀、思考、交流的時間,是保證課堂上小組交流能成功實現(xiàn)的一個前提
4、【自主探究】巴山夜雨的成因③材料三:三國時期,諸葛亮于農歷6月的一天,在葫蘆峪設下伏兵,打算用火攻全殲司馬懿。這一天,晴空萬里暑熱難耐,真乃火攻之良機。諸葛亮依計將司馬懿之眾誘入谷中……然而,正當大火沖天,司馬懿全軍行將覆滅之時,一場大雨不期而至,大雨澆滅了諸葛亮扶漢反魏的壯志,使他喊出了“謀事在人,成事在天,不可強也”的千古悲歌?!驹O計理念】前后呼應,發(fā)散思維。通過自主探究,學生各抒己見,完成對熱力環(huán)流整個知識框架的一個總結,既考查了學生的課堂學習效果,又鍛煉了學生知識的遷移能力,并認識生活中的地理規(guī)律,用生動的語言拉近學生與大氣理性知識的距離,體會到地理學科的重要性。【提問】如果將白天換成夏季,將夜間換成冬季,情況又會怎樣?城市與郊區(qū)之間也存在著熱力環(huán)流——城市風,它們是怎樣形成的?了解城市風的出現(xiàn)有何重要意義?如果地球上在赤道和兩極之間存在熱力環(huán)流,這個熱力環(huán)流應該怎樣?這幾個問題,請大家課后慢慢思考。
情景導入:......運用情景營造氣氛,激發(fā)學生的求知欲望,幫助學生聯(lián)系現(xiàn)實問題,學習歷史,拉近歷史與現(xiàn)實的距離,引導學生關注時政熱點,關心國家大事。自主學習:組織學生閱讀課文,老師參與學生閱讀活動并板書知識結構。通過學生自主學習,培養(yǎng)學生自學能力,為進一步好好學習打下基礎。交流學習:學生自學以后,老師引導學生相互交流自學成果,學生自主提出問題,相互解答,從而達到生生互動、師生互動,在互動中學習,共同提高
1、教材分析 本課選自普通高中課程標準實驗教材,人民教育出版社歷史必修(1),第六單元:現(xiàn)代中國的政治建設與祖國統(tǒng)一,第22課——祖國統(tǒng)一大業(yè)。祖國統(tǒng)一始終是中國人民的共同夙愿。本課內容主要敘述了“一國兩制”的偉大構想,為完成祖國統(tǒng)一大業(yè)提出了一個創(chuàng)造性的指導方針。香港、澳門的回歸,是“一國兩制” 偉大構想的成功實踐。在“一國兩制”方針指導下,海峽兩岸實現(xiàn)了一次歷史性的突破。揭示了“一國兩制” 的構想,對推動完成祖國完全統(tǒng)一大業(yè),實現(xiàn)中華民族偉大復興具有現(xiàn)實指導意義。 2、學情分析通過調查知道,學生對本節(jié)的基本史實有一定了解。但是,高一新生習慣于知識的記憶和教師的講解,不能深入分析歷史現(xiàn)象的內涵和外延;不能進一步探究事物的因果關系和理解事物的本質;并且需要進一步拓展思維的廣度和深度,實現(xiàn)從一維目標到三維目標的飛躍。
4.They were going to find someone to take part in their bet when they saw Henry walking on the street outside.[歸納]1.過去將來時的基本構成和用法過去將來時由“would+動詞原形”構成,主要表示從過去某一時間來看將要發(fā)生的動作(尤其用于賓語從句中),還可以表示過去的動作習慣或傾向。Jeff knew he would be tired the next day.He promised that he would not open the letter until 2 o'clock.She said that she wouldn't do that again.2.表示過去將來時的其他表達法(1)was/were going to+動詞原形:該結構有兩個主要用法,一是表示過去的打算,二是表示在過去看來有跡象表明將要發(fā)生某事。I thought it was going to rain.(2)was/were to+動詞原形:主要表示過去按計劃或安排要做的事情。She said she was to get married next month.(3)was/were about to+動詞原形:表示在過去看來即將要發(fā)生的動作,由于本身已含有“即將”的意味,所以不再與表示具體的將來時間狀語連用。I was about to go to bed when the phone rang.(4)was/were+現(xiàn)在分詞:表示在過去看來即將發(fā)生的動作,通常可用于該結構中的動詞是come,go,leave,arrive,begin,start,stop,close,open,die,join,borrow,buy等瞬間動詞。Jack said he was leaving tomorrow.
科學是人類認識世界的重要工具,閱讀科普說明文不僅可以啟迪心智,了解更多知識。而且更夠激發(fā)學生對科學的興趣。學習這些文章要注重學生科學精神的培養(yǎng),關注科學探索的過程,感受科學家在科學探索中表現(xiàn)的人格魅力。我們知道一些科學家就是因為閱讀了相關的科普文章才對某一學科產生興趣,從而走上成功之路的。我們在講解的時候可以跟學生列舉一些例子,讓學生認識到一篇好的科普文章的重大意義。
一、說教材本節(jié)課選自于人教版語文必修二第二單元詩三首中的一首詩歌,它是陶淵明歸隱后的作品。寫的是田園之樂,實際表明的是作者不愿與世俗同流合污的心聲,甘愿守著自己的拙志回歸田園。學習該詩,有助于學生了解山水田園詩的特點,感受者作者不同流俗的高尚情操,同時可以培養(yǎng)學生初步的鑒賞古典詩歌的能力。
1、《戰(zhàn)后資本主義世界經濟體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學時為1課時?!稓v史必修Ⅱ》一書用古今貫通、中外關聯(lián)的八個專題來著重反映人類社會經濟和社會生活領域發(fā)展進程中的重要史實。從第一單元勾勒“古代中國經濟的基本結構與特點”再到第八單元“世界經濟的全球化趨勢”,以歷史唯物主義觀點清晰闡明經濟全球化是世界生產力發(fā)展的要求和結果,是不以人的意志為轉移的歷史必然趨勢。第八單元的標題是《世界經濟的全球化趨勢》,作為最后一單元,從內容上講,有強烈的時代感和現(xiàn)實意義,是全書內容的總結與升華展望。提起“全球化”這個十年前才首次出現(xiàn)在美國《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現(xiàn)象,全球化有其自身內部嚴密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內容的著力點。
課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學習,讓學生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應用.
集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎. 本節(jié)內容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內容是高中數(shù)學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質求參數(shù)(參數(shù)的范圍);4.數(shù)據分析:通過并集、交集及補集的性質列不等式組,此過程中重點關注端點是否含“=”及?問題;
本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎,在教材中起承上啟下的作用。同時,它體現(xiàn)的數(shù)學思想與方法在整個中學數(shù)學學習中起重要作用。課程目標1.理解并掌握同角三角函數(shù)基本關系式的推導及應用.2.會利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解同角三角函數(shù)基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數(shù)學運算:利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數(shù)基本關系式的推導及應用; 難點:會利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明.
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關系,尤其學生學完兩個集合之間的關系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關系,體會直觀圖示對理解抽象概念的作用。數(shù)學學科素養(yǎng)1.數(shù)學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學運算:由集合間的關系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據分析:通過集合關系列不等式組, 此過程中重點關注端點是否含“=”及 問題;5.數(shù)學建模:用集合思想對實際生活中的對象進行判斷與歸類。
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據上述數(shù)據計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質,如圓的性質等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.
情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);