提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中歷史必修2物質(zhì)生活與習俗的變遷說課稿2篇

  • 《永遇樂 · 京口北固亭懷古》說課稿(二) 2021-2022學年統(tǒng)編版高中語文必修上冊

    《永遇樂 · 京口北固亭懷古》說課稿(二) 2021-2022學年統(tǒng)編版高中語文必修上冊

    此環(huán)節(jié)運用的是合作探究法,采用小組討論的形式開放回答即可。通過本課的學習,學生可以總結(jié)歸納出辛棄疾主張抗敵,收復(fù)失地的愛國熱情對南宋政府茍且偏安的不滿,吸取的歷史教訓,告誡當使用者不要草率用兵。對于決策者提出警告,抒發(fā)自己壯志難酬的感慨,教師總結(jié)歸納即可。本詩寫出最大特點就是大量典故的運用。學生可以本詩對用點表達自己的看法,我將在在PPT展示詩歌用典的意義,意在幫助學生理解更好用典這種詩歌技巧。本篇是一首詠史懷古詩,本單元學習了兩首同題材詩歌,有必要使學生掌握一類型的詩歌鑒賞方法。(五)比較閱讀 品味歷史這一環(huán)節(jié)PPT將展示上次課程學習的《念奴嬌赤壁懷古》并從內(nèi)容,形式等角度分析異同,采用提問的方法。此環(huán)節(jié)結(jié)束后簡要歸納詠史懷古詩類型。目的是鞏固加強對于詠史懷古題材詩歌理解,理解歸納詠史懷古詩題材類型。(六)布置作業(yè) 鞏固感知鑒賞李白《越中覽古》我將采用習題的形式,目的是使學生在實踐中運用所學方法鑒賞詠史懷古詩。

  • 《永遇樂 · 京口北固亭懷古》說課稿(一) 2021-2022學年統(tǒng)編版高中語文必修上冊

    《永遇樂 · 京口北固亭懷古》說課稿(一) 2021-2022學年統(tǒng)編版高中語文必修上冊

    (三)以讀帶講,感知文本1.學生朗讀首先我會讓學生結(jié)合書下的注釋自由大聲的朗讀本篇課文,掃清文字障礙,感知詞意。此環(huán)節(jié)可以讓學生在誦讀中解決詞中的生字困難,疏通文意。2.教師范讀我會聲情并茂、感情充沛的進行配樂朗誦。此環(huán)節(jié)力求讓學生感受到詞的音樂美,懂得詞的朗誦方法,為深入理解詞的內(nèi)容做準備。(四)精講細讀,深入文本此環(huán)節(jié)主要解決本課的重點,所以我會運用合作教學法和點撥教學法引導學生分析詞中典故,探討作者寫作目的。首先我將學生分為孫權(quán)劉裕組、劉義隆組、拓跋燾組、廉頗組四個小組。然后對這四個小組分別提出思考問題,讓學生以小組為單位解決我提出的問題。在學生討論結(jié)束后分別找每個小組中的一位同學回答,并引導點撥學生答案。孫權(quán)劉裕組:

  • 《再別康橋》說課稿(二) 2021-2022學年統(tǒng)編版高中語文選擇性必修下冊

    《再別康橋》說課稿(二) 2021-2022學年統(tǒng)編版高中語文選擇性必修下冊

    康橋風光、劍橋大學風貌(配上劍橋的優(yōu)美圖片,讓學生從視覺上對課文有一定的感知,幫助理解詩人的“康橋情結(jié)”)2.誦讀體味(教學重點的解決)先讓學生自由朗誦。要求學生談?wù)剬θ姷恼w感受教師稍加點撥,答案不需標準,只要整體把握正確即可。然后逐字逐句指導朗誦并結(jié)合作者獨特的人生際遇分析本詩所體現(xiàn)的詩情和藝術(shù)上的“三美”,從而達到準確把握作品主旨的目的。這種引導是循序漸進的,也符合學生的認知規(guī)律。簡介詩歌“三美”追求聞一多先生是我國現(xiàn)代文學史上集詩人、學者和斗士于一身的重要詩人。他不但致力于新詩藝術(shù)美的探索,提出了音樂美(音節(jié))、繪畫美(詞藻)、建筑美(節(jié)的勻稱和句的均齊)的詩歌\"三美\"的新格律詩理論主張,還努力進行創(chuàng)作實踐,寫出了許多精美詩篇。他的新格律詩理論被后人稱為現(xiàn)代詩學的奠基石,影響深遠。

  • 《再別康橋》說課稿(三) 2021-2022學年統(tǒng)編版高中語文選擇性必修下冊

    《再別康橋》說課稿(三) 2021-2022學年統(tǒng)編版高中語文選擇性必修下冊

    四、教法與學法1.誦讀法,詩歌是情感的藝術(shù),尤其是《再別康橋》這樣一首意境很美的詩歌,更需要通過誦讀去感受詩中的情感、韻味,把握其中的美。誦讀方式可以范讀、齊讀等多種方式。2.發(fā)現(xiàn)法,新課程標準倡導培養(yǎng)學生的發(fā)現(xiàn)意識、發(fā)現(xiàn)能力。把文本放給學生,給學生充分的時間和空間去發(fā)現(xiàn),去探究,是一種極其有效的學習方式。3.探究法。新課程標準倡導“自主、合作、探究”的學習方式,讓學生通過自主探究、合作探究,培養(yǎng)學生自主獲得知識的能力。 五、過程分析(一)課前預(yù)習①課前指導:指導學生閱讀學案中準備的有關(guān)徐志摩和寫作背景的資料。②指導學生誦讀文本,讀準字音,讀出節(jié)奏,體會感情。鑒賞詩歌離不開詩歌意象和有感情的誦讀,引導學生邊讀邊思考:詩歌寫了什么內(nèi)容?從哪些句子看出來?勾畫出你感受最深的句子。怎樣朗讀才能從分表達作者的感情?讓學生設(shè)計一個自己認為最值得探究的問題。讓學生設(shè)計一個自己認為本文最值得探究的問題。

  • 《祝福》說課稿(一) 2021-2022學年統(tǒng)編版高中語文必修下冊

    《祝?!氛f課稿(一) 2021-2022學年統(tǒng)編版高中語文必修下冊

    三、說教學目標:根據(jù)教材特點、學生學情,結(jié)合單元的教學要求和本課特點,我確定本節(jié)課的教學目標為:1、語言建構(gòu)與運用:把握小說主要內(nèi)容,梳理小說情節(jié)。2、思維發(fā)展與提升:鑒賞文本,品味人物形象,探究造成人物悲劇的社會根源。3、審美鑒賞與創(chuàng)造:分析祥林嫂人物形象,學習本文塑造人物形象的方法。4、文化傳承與理解:認識封建禮教的罪惡,培養(yǎng)學生反封建意識及斗爭意識,體會魯迅小說的社會批判性。四、說教學重難點:教學重點:分析祥林嫂的人物形象。教學難點:體會次要人物身上的內(nèi)涵,探究造成人物悲劇的社會根源。五、說教法學法:教法:任務(wù)導向 啟發(fā)與點撥 講授學法:問題探究 小組合作 展示學習是自覺的能力,合作是團隊的探究,通過指導自學,小組學習,提升合作學習的能力,讓學生掌握科學的學習方法,教法上,我充分遵從認知規(guī)律和教學規(guī)律,尊重學生主體地位以學習任務(wù)為驅(qū)動,以情境創(chuàng)設(shè)為手段,啟

  • 古詩詞誦讀《將進酒》說課稿2021-2022學年高中語文統(tǒng)編版選擇性必修上冊

    古詩詞誦讀《將進酒》說課稿2021-2022學年高中語文統(tǒng)編版選擇性必修上冊

    一、說教材選修課是在必修課程基礎(chǔ)上的拓展與提高,它力爭促進學生各自特長和個性的形成。我們在必修部分已經(jīng)學習了李白的一首古風《蜀道難》,學生對李白其人及其詩風已有了一定的了解。本單元的任務(wù)是“因聲求氣,吟詠詩韻”,它要求我們通過對古典詩歌聲律特點的把握,學習有感情地吟詠,誦讀作品,并深入地了解詩歌的感情?!秾⑦M酒》一詩時而奔放,時而深沉,感情大起大落變化明顯,學生容易進入吟詠和體會情感的體驗閱讀中。二、說教法學法現(xiàn)代語文觀念中提倡語文教學要多讀,要培養(yǎng)學生的語感,特別是對一些優(yōu)秀的古詩文??梢娫趯W習古代詩文的過程中,誦讀是非常重要的,有助于加深學生對課文思想內(nèi)容的理解??梢栽诶首x中理解詩文的內(nèi)容,所謂“讀書百遍其義自見”,在反復(fù)的朗讀中可以慢慢體會詩人所要表達的思想感情,因此本堂課我采取以誦讀為線索,完成對詩歌思想內(nèi)容的理性思考。

  • 人教A版高中數(shù)學必修一簡單的三角恒等變換教學設(shè)計(1)

    人教A版高中數(shù)學必修一簡單的三角恒等變換教學設(shè)計(1)

    四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學的把實際問題轉(zhuǎn)化成數(shù)學問題,如何選擇自變量建立數(shù)學關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學關(guān)系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應(yīng)用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預(yù)習下節(jié)課內(nèi)容學生根據(jù)課堂學習,自主總結(jié)知識要點,及運用的思想方法。注意總結(jié)自己在學習中的易錯點;

  • 人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質(zhì)教學設(shè)計(1)

    人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質(zhì)教學設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。

  • 人教A版高中數(shù)學必修二古典概型和概率的基本性質(zhì)教學設(shè)計

    人教A版高中數(shù)學必修二古典概型和概率的基本性質(zhì)教學設(shè)計

    新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。

  • 點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    兩點間的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 兩直線的交點坐標教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 直線的點斜式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線的兩點式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 兩條平行線間的距離教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    兩條平行線間的距離教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 圓的標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 直線的一般式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 拋物線的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

上一頁123...464748495051525354555657下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!