3、整理數(shù)據(jù),確定思路。在此認(rèn)知基礎(chǔ)上,緊接著引申出進(jìn)一步研究的問題“各條跑道的起跑線應(yīng)該相差多少米?”這個問題很難通過觀察得到,需要學(xué)生收集相關(guān)數(shù)據(jù),具體分析起跑線的位置與什么有關(guān)。使學(xué)生在匯報(bào)的過程中自然的發(fā)現(xiàn):要確定跑道的起跑線,只要算出每相鄰兩條跑道的長度差就可以了。有的學(xué)生說,由于跑道的直道長度是相同的,所以算出彎道的長度差就可以了。在這里,教師或?qū)W生還可就圖片說明半圓形跑道的直徑是如何規(guī)定的,也就是里圓的直徑加上兩個跑道的寬度,以及跑道線的寬在這里忽略不計(jì)等問題向其它學(xué)生作一具體說明。在些環(huán)節(jié),讓學(xué)生進(jìn)行觀察,讓他們自己發(fā)現(xiàn)規(guī)律,培養(yǎng)他們抽象概括能力和語言表達(dá)能力,在這個環(huán)節(jié)中教師要靈活的駕駑課堂,及時的抓住課堂中新生成的問題,使問題得以提升,把課堂推向了高潮.
三、情感與態(tài)度目標(biāo)教學(xué)重點(diǎn):在合作討論的過程中體會數(shù)據(jù)在現(xiàn)實(shí)生活中的作用,理解扇形統(tǒng)計(jì)圖的特點(diǎn),并能從中發(fā)現(xiàn)信息。教學(xué)難點(diǎn):能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。二、學(xué)情分析本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點(diǎn)。三、設(shè)計(jì)理念和教法分析1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者。”將課堂設(shè)置問題給學(xué)生,讓學(xué)生自己收集信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。2、運(yùn)用探究法。探究的方法屬于啟發(fā)式教學(xué),探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生收集資料,獲取信息并合作交流。
2、說說下面每個百分?jǐn)?shù)的具體含義,是怎么求出來的?(哪兩個數(shù)相比,把誰看作單位“1”)(1)某種菜籽的出油率是36%。(2)實(shí)際用電量占計(jì)劃用電量的80%。(3)李家今年荔枝產(chǎn)量是去年的120%。二、新授1、根據(jù)數(shù)學(xué)信息提出問題:出示例2的情境圖,讓學(xué)生根據(jù)圖中提供的條件提出用百分?jǐn)?shù)解決的問題。(1)計(jì)劃造林是實(shí)際造林的百分之幾?(2)實(shí)際造林是計(jì)劃造林的百分之幾?(3)實(shí)際造林比計(jì)劃造林增加百分之幾?(4)計(jì)劃早林比實(shí)際造林少百分之幾?2、讓學(xué)生先解決前兩個問提。解決這類問題要先弄清楚哪兩個數(shù)相比,哪個數(shù)是單位“1”,哪一個數(shù)與單位“1”相比。3、學(xué)生自主解決“實(shí)際早林比計(jì)劃增加了百分之幾”的問題。(1)分析數(shù)量關(guān)系,讓學(xué)生自己嘗試著用線段圖表示出來。
教材分析:例2以學(xué)校興趣小組為題材,引出稍復(fù)雜的已知一個數(shù)的幾分之幾是多少,求這個數(shù)的實(shí)際問題。用算術(shù)方法解決這樣的實(shí)際問題,不僅需要逆向思考,還要把“比一個數(shù)多它的幾分之幾”,轉(zhuǎn)化為“是一個數(shù)的幾分之幾”,比較抽象,思維難度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要經(jīng)歷從“多幾分之幾”到“是幾分之幾”的轉(zhuǎn)化,實(shí)際上是方程的形式,算術(shù)的思路。教學(xué)重點(diǎn):弄清單位“1”的量,會分析題中的數(shù)量關(guān)系。教學(xué)難點(diǎn):分析題中的數(shù)量關(guān)系。學(xué)情分析:由于小學(xué)生目前尚未接觸到比較復(fù)雜的,用算術(shù)方法很難解決的實(shí)際問題,所以對方程解法的優(yōu)越認(rèn)識不足。一些學(xué)生覺得用方程解需要寫設(shè)句,比較麻煩,因此喜歡用算術(shù)解法。對此,教師一方面應(yīng)肯定學(xué)生自己想到的正確解法,另一方面又要因勢利導(dǎo),從進(jìn)一步學(xué)習(xí)的需要與方程解法的特點(diǎn)等角度,使學(xué)生初步了解學(xué)習(xí)列方程解決問題的重要性。從而提高學(xué)習(xí)用方程解決問題的自覺性和積極性。
1、課件出示教材例1的座位圖。教師說明分組方法,從左往右依次為第1列、第2列、第3列直至第6列,從前往后依次為第1行、第2行直至第5行。請學(xué)生用自己的語言說說張亮的位置,要求盡可能簡潔。當(dāng)多位學(xué)生說完之后,教師組織全體學(xué)生評價哪種方法最簡潔?當(dāng)學(xué)生一直認(rèn)同第2列第3行是最簡潔的描述方法時,教師板書:第2列第3行。學(xué)生主動參與,體會最簡表述方法的優(yōu)越性。2、此時,教師再提出你能用這種方法描述王艷的位置嗎?趙強(qiáng)呢?及時反饋,利用最簡方法描述其他兩位同學(xué)的位置。3、讓學(xué)生完成一個記錄游戲:教師快速地報(bào)出第幾列第幾行,讓學(xué)生記錄。學(xué)生可能記錄不下來。這時教師提出我們要進(jìn)一步簡潔,不用文字,用數(shù)字和符號把它的位置記錄下來。通過游戲使學(xué)生感受到“數(shù)對”產(chǎn)生的必要性。學(xué)生用自己的方式填寫,教師可以選取幾位代表在黑板上寫,然后提出這些同學(xué)記錄方法不一樣,但有什么相同的地方?引導(dǎo)學(xué)生觀察發(fā)現(xiàn)都有數(shù)字2和3,都表示第2列第3行,
三、鞏固練習(xí),拓展應(yīng)用練習(xí)是學(xué)生領(lǐng)悟知識,形成技能,發(fā)展智力的重要手段,我遵循“由淺入深,循序漸進(jìn)”的原則設(shè)計(jì)了以下不同層次的練習(xí)。1、基本練習(xí)自主練習(xí)第1題填一填,借助直觀圖,鞏固分?jǐn)?shù)乘法的意義和計(jì)算方法。2、提高練習(xí)自主練習(xí)2、4題。本題的設(shè)計(jì),目的是使學(xué)生除了掌握基本的數(shù)學(xué)知識和技能外,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,同時,也讓學(xué)生感受到生活中處處有數(shù)學(xué),從而激發(fā)對數(shù)學(xué)的興趣,以及學(xué)好數(shù)學(xué)的愿望。四、課堂小結(jié),升華認(rèn)識引導(dǎo)學(xué)生回憶總結(jié):這節(jié)課你們都知道了些什么?你有哪些收獲?這節(jié)課你表現(xiàn)得怎樣?等等,這樣的小結(jié)有利于學(xué)生鞏固本節(jié)課的重點(diǎn),獲得成功的體驗(yàn),激發(fā)學(xué)習(xí)的熱情。五、板書設(shè)計(jì):簡單明了,能系統(tǒng)地反映出本課的重、難點(diǎn)。有利于學(xué)生形成一定的知識網(wǎng)絡(luò)。都起到了“畫龍點(diǎn)睛”的作用。
(這一環(huán)節(jié)由學(xué)生熟知的典型事例入手,讓學(xué)生感受到數(shù)學(xué)與生活的密切聯(lián)系。把用數(shù)描述事物和用圖描述事物整合在一起,使學(xué)生體會用圖描述事物直觀性的同時,建立數(shù)與形之間的聯(lián)系,發(fā)展抽象思維。讓學(xué)生通過自主探究、合作交流的學(xué)習(xí)方式來突破本節(jié)課的教學(xué)重點(diǎn),鼓勵學(xué)生說出自己的意見,并且通過多元化的評價激發(fā)學(xué)生的學(xué)習(xí)興趣。)(三)及時練習(xí)課本103頁練一練第一題讓學(xué)生自主完成,填充空白統(tǒng)計(jì)圖。提示學(xué)生標(biāo)注名稱和數(shù)據(jù)。(這一環(huán)節(jié)讓學(xué)生體會數(shù)學(xué)在生活中的應(yīng)用)(四)拓展延伸。觀察兩幅扇形統(tǒng)計(jì)圖,回答問題。(這一環(huán)節(jié)給學(xué)生充分討論交流的時間,讓學(xué)生在討論中互相補(bǔ)充,在討論中不斷完整自己的知識。讓學(xué)生加深對扇形統(tǒng)計(jì)圖的理解,理解單位一未知,無法根據(jù)百分比判斷部分量的大?。ㄎ澹┛偨Y(jié)評價:
學(xué)生的學(xué)習(xí)活動是一個生動活潑而富有個性的過程,為了把學(xué)生探索的陣地從課堂延伸到課外,引導(dǎo)學(xué)生主動地應(yīng)用所學(xué)的知識和方法解決實(shí)際問題。我又設(shè)計(jì)了以下練習(xí)題:1、腦筋樂園:學(xué)校田徑運(yùn)動會即將舉行,你有辦法幫學(xué)校在操場上畫出一個半徑為50米的圓嗎?2、(1)應(yīng)用圓的知識解釋下列現(xiàn)象,并寫出來。為什么井蓋也得做成圓形的?人們在圍觀的時,為什么會自然地圍成圓形?(2)搜集有關(guān)圓的資料。貼到教室的數(shù)學(xué)角上,大家共享。3、畫出各種大小、不同顏色的圓,組合出一幅美麗的圖畫。(設(shè)計(jì)意圖)將學(xué)生探索的陣地從課堂延伸到課外,引導(dǎo)學(xué)生主動地應(yīng)用所學(xué)知識和方法解決實(shí)際問題。(我認(rèn)為把本句提前,這里刪去,這樣顯得更連貫)(五)全課總結(jié)1、讓學(xué)生談收獲,進(jìn)行自我評價。2、我對整節(jié)課進(jìn)行知識要點(diǎn)歸納和對學(xué)生學(xué)習(xí)情況進(jìn)行評價。(這樣總結(jié),我注重學(xué)生的自我評價,自我體驗(yàn)和個性發(fā)展。即學(xué)生情感的體驗(yàn)和收獲)(我認(rèn)為藍(lán)色字那句可刪去)
(二)歸納小結(jié)。設(shè)問:今天學(xué)了什么?什么叫軸對稱圖形?怎樣判斷軸對稱圖形?什么叫對稱軸?怎樣找出軸對稱圖形的對稱軸?(新課后的總結(jié)能起到畫龍點(diǎn)睛的作用,同時有利于幫助學(xué)生理清知識結(jié)構(gòu),形成完整認(rèn)識。)現(xiàn)在能把兩側(cè)大小不同的蝴蝶圖畫成一模一樣嗎?(教師拿著新課引入時的不對稱的蝴蝶圖)(前后呼應(yīng),解答課前疑難,目的是檢查學(xué)生活用知識的情況。)全課小結(jié):這節(jié)課,我通過五個環(huán)節(jié)的教學(xué)設(shè)計(jì),既遵循了概念教學(xué)的規(guī)律,又符合小學(xué)生的認(rèn)知特點(diǎn),指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦為主的學(xué)習(xí)方法,使學(xué)生學(xué)有興趣、學(xué)有所獲。附板書設(shè)計(jì):軸對稱圖形如果一條圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
《函數(shù)的單調(diào)性與最大(?。┲祡》系人教A版高中數(shù)學(xué)必修第一冊第三章第二節(jié)的內(nèi)容,本節(jié)包括函數(shù)的單調(diào)性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓?。在初中學(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的救開結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。
本節(jié)通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問題.2.能自建確定性函數(shù)模型解決實(shí)際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問題.重點(diǎn):利用函數(shù)模型解決實(shí)際問題;難點(diǎn):數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
本節(jié)課在已學(xué)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實(shí)上,這種差異正是不同類型現(xiàn)實(shí)問題具有不同增長規(guī)律的反應(yīng).而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標(biāo)1.掌握常見增長函數(shù)的定義、圖象、性質(zhì),并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算等核心素養(yǎng).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:常見增長函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學(xué)運(yùn)算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點(diǎn):比較函數(shù)值得大?。浑y點(diǎn):幾種增長函數(shù)模型的應(yīng)用.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認(rèn)識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認(rèn)識;b.邏輯推理:由特殊到一般的推理;
《函數(shù)的單調(diào)性與最大(?。┲怠肥歉咧袛?shù)學(xué)新教材第一冊第三章第2節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎(chǔ)上學(xué)生對增減性有一個初步的感性認(rèn)識,所以本節(jié)課是學(xué)生數(shù)學(xué)思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對進(jìn)一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,對解決各種數(shù)學(xué)問題有著廣泛作用。課程目標(biāo)1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(小)值及其幾何意義;4、學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學(xué)學(xué)科素養(yǎng)
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡單的問題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大小. 3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關(guān)的問題.課程目標(biāo)1、通過實(shí)際問題了解對數(shù)函數(shù)的實(shí)際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點(diǎn):理解對數(shù)函數(shù)的概念和意義;難點(diǎn):理解對數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進(jìn)一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。在類比推理的過程中,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。