4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過(guò)點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過(guò)渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
“整數(shù)乘法運(yùn)算定律推廣到小數(shù)乘法”是在學(xué)生已經(jīng)掌握了小數(shù)乘法計(jì)算、整數(shù)乘法運(yùn)算定律的基礎(chǔ)上進(jìn)行教學(xué)的。教材通過(guò)幾組算式,讓學(xué)生計(jì)算出○的左右兩邊算式的得數(shù),找出它們的相等關(guān)系,總結(jié)出整數(shù)的運(yùn)算定律對(duì)小數(shù)同樣適用。學(xué)好這部分內(nèi)容,不僅培養(yǎng)學(xué)生的邏輯思維能力,而且以后能用本課所學(xué)的使一些小數(shù)的計(jì)算簡(jiǎn)便,也為以后學(xué)習(xí)用不同方法解答應(yīng)用題起著積極的推動(dòng)作用。2、教學(xué)目標(biāo)的確定:根據(jù)教材特點(diǎn),依據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的要求及學(xué)生實(shí)際,我確定本課教學(xué)目標(biāo)如下:(1)知識(shí)能力目標(biāo):理解整數(shù)乘法運(yùn)算定律對(duì)于小數(shù)乘法用樣適用,并能應(yīng)用這些定律進(jìn)行一些簡(jiǎn)便計(jì)算。(2)過(guò)程方法目標(biāo):引導(dǎo)學(xué)生在經(jīng)歷猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)中,發(fā)展學(xué)生的思維能力。(3)情感態(tài)度目標(biāo):通過(guò)小組合作學(xué)習(xí),培養(yǎng)學(xué)生進(jìn)行交流的能力與合作意識(shí),體驗(yàn)到解決問(wèn)題策略的多樣性。結(jié)合相關(guān)內(nèi)容,滲透“事物間是普遍聯(lián)系”的觀點(diǎn),對(duì)學(xué)生進(jìn)行辨證唯物主義的啟蒙教育。
二、以人為本,說(shuō)策略?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)出發(fā)……”因此,結(jié)合本課教材特點(diǎn)、學(xué)生實(shí)際情況,我采取小組合作學(xué)習(xí),引導(dǎo)學(xué)生應(yīng)用學(xué)過(guò)的分?jǐn)?shù)、小數(shù)互化的知識(shí)進(jìn)行遷移、類推,學(xué)習(xí)新知識(shí)。同時(shí),讓學(xué)生在嘗試探究的積極活動(dòng)中獲取新知,發(fā)展能力。三、以探為主,說(shuō)流程。課堂教學(xué)是學(xué)生數(shù)學(xué)知識(shí)的獲得、技能技巧的形成、智力、能力的發(fā)展以及思想品德的養(yǎng)成的主要途徑。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,遵循目標(biāo)性、整體性、啟發(fā)性、主體性等一系列原則進(jìn)行教學(xué)設(shè)計(jì)。設(shè)計(jì)了以下幾個(gè)主要的教學(xué)程序:(一)設(shè)疑激趣,引入課題。“興趣是最好的老師”,為了激發(fā)學(xué)生的學(xué)習(xí)興趣,課一開始,我設(shè)計(jì)了一個(gè)童話故事,在故事中設(shè)計(jì)了幫助主人公比較2/5、42%、0.45的問(wèn)題,然后引出課題。
今天我說(shuō)課的內(nèi)容是二年級(jí)上冊(cè)第二單元《100以內(nèi)的加法和減法》的第一課時(shí),兩位數(shù)加兩位數(shù)的不進(jìn)位加法。教材通過(guò)參觀博物館的情境圖引出兩位數(shù)的不進(jìn)位和進(jìn)位加法。本節(jié)課主要解決不進(jìn)位加法豎式計(jì)算中的對(duì)位和計(jì)算順序問(wèn)題。由于本節(jié)課是在學(xué)生已經(jīng)掌握兩位數(shù)加整十?dāng)?shù)、兩位數(shù)加一位數(shù)的基礎(chǔ)上學(xué)習(xí)的內(nèi)容,這堂課的關(guān)鍵是引導(dǎo)學(xué)生運(yùn)用這些已有的知識(shí)經(jīng)驗(yàn),借助位值圖,通過(guò)自己的操作探究、合作學(xué)習(xí),將新知識(shí)轉(zhuǎn)化、納入已有的認(rèn)知結(jié)構(gòu),自主地學(xué)習(xí)兩位數(shù)加兩位數(shù)不進(jìn)位加法的計(jì)算方法。因此本節(jié)課的目標(biāo)確定為:知識(shí)與能力:1、充分利用直觀手段,幫助學(xué)生理解和掌握筆算兩位數(shù)加兩位數(shù)的方法。2、培養(yǎng)學(xué)生觀察、分析、解決問(wèn)題的能力。過(guò)程與方法:運(yùn)用直觀手段,創(chuàng)設(shè)有意義的問(wèn)題情境和游戲活動(dòng)來(lái)組織教學(xué),讓學(xué)生通過(guò)動(dòng)手操作、自主探索、合作交流等方法掌握算法,提高學(xué)習(xí)積極性,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。
說(shuō)教材:(1)教學(xué)內(nèi)容:人民教育出版社出版的九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書第三冊(cè)中的第16—17頁(yè)的例1及“做一做”,練習(xí)三1、2、3、4、題。(2)教材分析(教材的前后聯(lián)系,地位作用及編排意圖):兩位數(shù)減兩位數(shù)是學(xué)生學(xué)習(xí)筆算減法的開始,也是以后學(xué)習(xí)多位筆算減法的基礎(chǔ)。由于筆算減法是在口算減法的基礎(chǔ)上進(jìn)行教學(xué)的,所以教材先安排了口算整十?dāng)?shù)減整十?dāng)?shù)、兩位數(shù)減整十?dāng)?shù)、兩位數(shù)減一位數(shù)的復(fù)習(xí),為理解筆算做好準(zhǔn)備。教材由兩位數(shù)減一位數(shù)的不退位減法口算引出兩位數(shù)減一位數(shù)的不退位減法的筆算。說(shuō)明這種口算題也可以寫成豎式,用筆算。然后,對(duì)照直觀圖說(shuō)明計(jì)算時(shí)要把相同數(shù)位對(duì)齊,從個(gè)位減起的計(jì)算順序。(3)教學(xué)目標(biāo):根據(jù)教材的編排意圖以及學(xué)生的實(shí)際,我確定本課的教學(xué)目標(biāo)是:使學(xué)生理解筆算兩位數(shù)減兩位數(shù)的算理,掌握豎式的寫法和計(jì)算方法,并能正確的筆算。培養(yǎng)學(xué)生知識(shí)遷移的能力和口頭表達(dá)能力,培養(yǎng)學(xué)生仔細(xì)計(jì)算的良好學(xué)習(xí)習(xí)慣。
一、說(shuō)教材1、教學(xué)內(nèi)容本節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材人教版小學(xué)數(shù)學(xué)第三冊(cè)18至19頁(yè)的內(nèi)容。它是在學(xué)生學(xué)習(xí)了20以內(nèi)的退位減法、兩位數(shù)減一位數(shù)和兩位數(shù)減整十?dāng)?shù)以及兩位數(shù)減兩位數(shù)的不退位減法筆算的基礎(chǔ)上學(xué)習(xí)的。它是以后學(xué)習(xí)多位數(shù)減法的重要基礎(chǔ)。2、教學(xué)目標(biāo)(1)、知識(shí)目標(biāo):使學(xué)生在理解算理的基礎(chǔ)上初步掌握兩位數(shù)退位減法的計(jì)算方法,并能正確的進(jìn)行計(jì)算。(2)、技能目標(biāo):培養(yǎng)學(xué)生的動(dòng)手操作能力,發(fā)展學(xué)生的思維和語(yǔ)言表達(dá)能力。(3)、情感目標(biāo):通過(guò)情景的創(chuàng)設(shè),培養(yǎng)學(xué)生的愛(ài)國(guó)之情,同時(shí)讓學(xué)生在自主探索算法的基礎(chǔ)上體驗(yàn)到成功的喜悅。3、教學(xué)重點(diǎn):本節(jié)課的重點(diǎn)是理解筆算兩位數(shù)退位減的算理,能正確用豎式計(jì)算。4、教學(xué)難點(diǎn):理解兩位數(shù)減兩位數(shù)退位減法的算理。
然后我讓自主嘗試探索末尾有0有乘法,然后讓學(xué)生自己上臺(tái)來(lái)給大家展示各自的算法,并討論比較那種算法更簡(jiǎn)便,從而總結(jié)出末尾有0的乘法列豎式的簡(jiǎn)便方法。為了解決這節(jié)課的重點(diǎn)和難點(diǎn),我在這個(gè)環(huán)節(jié)里又有針對(duì)性的設(shè)計(jì)了兩個(gè)練習(xí),一個(gè)是0和非0的對(duì)位,還有一個(gè)是積末尾補(bǔ)0。在教學(xué)因數(shù)中間有0的乘法,因?yàn)閷W(xué)生有了前面的基礎(chǔ),所以我直接讓學(xué)生在兩個(gè)問(wèn)題中選擇一個(gè)解決。重點(diǎn)強(qiáng)調(diào)了因數(shù)中間0不能漏乘。在練習(xí)方面,我設(shè)計(jì)了看誰(shuí)的眼睛亮,通過(guò)找錯(cuò)誤,學(xué)生練習(xí)時(shí),老師觀察到有共性的的錯(cuò)誤,通過(guò)視頻展示臺(tái),讓學(xué)生來(lái)尋找錯(cuò)誤,再次突破本課的重點(diǎn)。一題是360×25因數(shù)末數(shù)一共有一個(gè)0,而積的末尾應(yīng)該有三個(gè)0。讓學(xué)生進(jìn)行討論,再一次讓學(xué)生體會(huì)了積末尾0個(gè)數(shù)確定的方法。在鞏固和拓展聯(lián)系環(huán)節(jié),設(shè)計(jì)了闖關(guān)游戲,先是基本的計(jì)算練習(xí),接著是因數(shù)末尾0個(gè)數(shù)的判斷和解決問(wèn)題的聯(lián)系,通過(guò)練習(xí),鞏固豎式的簡(jiǎn)便寫法,提高學(xué)生的計(jì)算能力。
師:這是一種較為簡(jiǎn)便、應(yīng)用廣泛的方法,但有時(shí)候也要具體問(wèn)題具體分析,做題時(shí)要合理靈活地選擇計(jì)算方法。《研究學(xué)生如何學(xué)比研究教師如何教更重要。學(xué)生對(duì)新知識(shí)的學(xué)習(xí)必須以已有的知識(shí)和學(xué)習(xí)經(jīng)驗(yàn)作為基礎(chǔ),因此正確分析學(xué)生的知識(shí)基礎(chǔ)和學(xué)習(xí)經(jīng)驗(yàn)就顯得格外重要。我認(rèn)為分?jǐn)?shù)除以整數(shù)的教學(xué)基礎(chǔ)在于以下幾點(diǎn):分?jǐn)?shù)與小數(shù)的轉(zhuǎn)化;分?jǐn)?shù)的意義;分?jǐn)?shù)乘法的意義;倒數(shù)的知識(shí);商不變的性質(zhì)等。這些知識(shí)在以前的學(xué)習(xí)中,學(xué)都有了足夠的掌握。有了上面的分析基礎(chǔ),我覺(jué)得把研究新知識(shí)的權(quán)力教給學(xué)生,是完全可以的?!?、質(zhì)疑與反思。師:對(duì)于這些方法,盡管大家的思維角度不盡相同,但是基本的想法是相同的,想一想我們是怎樣解決問(wèn)題的?生:用學(xué)過(guò)的倒數(shù)、商不變的性質(zhì)解決的。師:對(duì)。用一句話概括就是運(yùn)用舊知識(shí)解決新新問(wèn)題。這是一種很重要的學(xué)習(xí)方法。5、實(shí)踐體驗(yàn)練習(xí)鞏固。
一、說(shuō)教材:本課時(shí)主要的內(nèi)容就是讓學(xué)生在情境中掌握兩位數(shù)加兩位數(shù)的進(jìn)位加法計(jì)算,讓學(xué)生通過(guò)嘗試和探索出多種算法,體驗(yàn)多種算法,然后比較出最好的算法。教學(xué)目標(biāo):1、通過(guò)具體的情境使學(xué)生更一步的理解加法的意義和提高學(xué)生的估算意識(shí)。2、通過(guò)學(xué)生的合作學(xué)習(xí)從而能探討出多種計(jì)算兩位數(shù)減兩位退位減法的方法。3、培養(yǎng)學(xué)生的數(shù)學(xué)口語(yǔ)表達(dá)能力,提高學(xué)生的學(xué)習(xí)興趣。4、掌握兩位數(shù)加兩位數(shù)(進(jìn)位加)豎式的寫法。重點(diǎn):(1)通過(guò)學(xué)生的合作學(xué)習(xí)從而能探討出多種計(jì)算兩位數(shù)減兩位退位減法的方法。(2)掌握筆算加法的計(jì)算法則。難點(diǎn):對(duì)多樣化算法進(jìn)行優(yōu)化,達(dá)到正確完成計(jì)算。發(fā)展學(xué)生的估算意識(shí)、和探究意識(shí)和解決實(shí)際問(wèn)題的能力。二、說(shuō)教法:組織學(xué)生在前面計(jì)算的基礎(chǔ)上,自主探索出兩位數(shù)加兩位(進(jìn)位加)的計(jì)算方法,并通過(guò)交流、討論,達(dá)到對(duì)算法的優(yōu)化,在通過(guò)“試一試”、“算一算”、“想一想”等形式達(dá)到知識(shí)的掌握。
二、教材分析本節(jié)課是讓學(xué)生結(jié)合具體情境,理解路程、時(shí)間與速度之間的關(guān)系。為此,教材安排了一個(gè)情境:比一比兩輛車誰(shuí)跑得快一些?從而讓學(xué)生歸納出路程、時(shí)間與速度三個(gè)數(shù)量,進(jìn)而歸納出速度=路程÷時(shí)間,再結(jié)合試一試兩題,讓學(xué)生得出:路程=速度×時(shí)間,時(shí)間=路程÷速度,進(jìn)一步理解路程、速度、時(shí)間三者之間的關(guān)系。因此,理解路程、時(shí)間與速度之間的關(guān)系是本節(jié)課的重點(diǎn),難點(diǎn)是速度的單位。學(xué)習(xí)了這節(jié)課,學(xué)生可以解決生活中的一些實(shí)際問(wèn)題,并且可以合理地安排時(shí)間,提高效率。三、學(xué)情分析學(xué)生對(duì)于路程、時(shí)間與速度的關(guān)系一定有所了解,但他們雖然知道三者之間的數(shù)量關(guān)系式,卻并不十分了解為什么有這樣的關(guān)系。因此,在課上應(yīng)遵循“問(wèn)題情境---建立模式---解釋應(yīng)用”的基本敘述模式,為學(xué)生自主參與、探究和交流提供時(shí)間和空間。四、教學(xué)目標(biāo)