1、有利于維護(hù)國家的統(tǒng)一和安全民族區(qū)域自治以領(lǐng)土完整、國家統(tǒng)一為前提和基礎(chǔ),是國家集中統(tǒng)一領(lǐng)導(dǎo)與民族區(qū)域自治的有機(jī)結(jié)合。增強(qiáng)了中華民族的凝聚力,使各族人民特別是少數(shù)民族人民把熱愛民族與熱愛祖國的感情結(jié)合起來,自覺擔(dān)負(fù)起捍衛(wèi)祖國統(tǒng)一、保衛(wèi)邊疆的光榮職責(zé)。2、有利于保障少數(shù)民族人民當(dāng)家作主的權(quán)利民族自治地方充分享有自治權(quán)利。自主管理本地內(nèi)部事務(wù),滿足了少數(shù)民族人民積極參加國家政治生活的愿望。3、有利于發(fā)展平等、團(tuán)結(jié)、互助的社會主義新型民族關(guān)系民族自治地方以一個或幾個少數(shù)民族為主體,同時包括當(dāng)?shù)鼐幼〉臐h族和其他少數(shù)民族,各族人民和各族干部之間聯(lián)系更加密切,逐步消除了歷史上遺留下來的民族隔閡。4、有利于促進(jìn)社會主義現(xiàn)代化事業(yè)的發(fā)展自治機(jī)關(guān)能夠結(jié)合本民族、本地區(qū)特點,把少數(shù)民族的特殊利益與國家的整體利益協(xié)調(diào)起來,充分發(fā)揮各自的特長和優(yōu)勢,調(diào)動各族人民參加國家建設(shè)的積極性、創(chuàng)造性。
從國際法角度看,國際社會的每一個主權(quán)國家應(yīng)該是一律平等的,但是,在現(xiàn)實的國際關(guān)系中,每個國家的國際地位、國際影響力,歷來都是由國家力量決定的。國家力量發(fā)生變化,也會引起國際關(guān)系的變化。經(jīng)濟(jì)、科技落后,軍力不強(qiáng),國內(nèi)政局不安,它的國際影響力、參與力就不強(qiáng)。正因為如此,某些發(fā)達(dá)國家往往以其強(qiáng)大的國家力量為后盾,推行霸權(quán)主義、強(qiáng)權(quán)政治。二、維護(hù)我國的國家利益教師活動:閱讀教材第100頁內(nèi)容,思考討論為什么要維護(hù)我國的國家利益?我國的國家利益包括哪些內(nèi)容?學(xué)生活動:認(rèn)真思考并積極討論,踴躍發(fā)言1、原因我國是人民當(dāng)家作主的社會主義國家,國家利益與人民的根本利益相一致。維護(hù)我國的國家利益就是維護(hù)廣大人民的根本利益,具有正當(dāng)性和正義性。2、內(nèi)容我國國家利益的主要內(nèi)容包括:安全利益,如國家的統(tǒng)一、獨立、主權(quán)和領(lǐng)土完整;政治利益,如我國政治、經(jīng)濟(jì)、文化等制度的鞏固;經(jīng)濟(jì)利益,如我國資源利用的效益、經(jīng)濟(jì)活動的利益和國家物質(zhì)基礎(chǔ)的增強(qiáng)等。
一、教材分析普通高中思想政治課程標(biāo)準(zhǔn)及浙江省普通高中新課程實驗學(xué)科教學(xué)指導(dǎo)意見對本課時內(nèi)容做了如下規(guī)定:基本要求:知道我國是統(tǒng)一的多民族國家;理解我國處理民族關(guān)系的三項基本原則及其相互關(guān)系;懂得處理民族關(guān)系的重要性,自覺履行維護(hù)國家統(tǒng)一和民族團(tuán)結(jié)的義務(wù)。發(fā)展要求:聯(lián)系國內(nèi)外的具體事例,加深理解我國處理民族關(guān)系的基本原則的重要性。本框題有如下內(nèi)容不作拓展:我們偉大的祖國是各族人民共同締造的;我國新型民族關(guān)系的形成;實施西部大開發(fā)戰(zhàn)略對加快民族自治地方的經(jīng)濟(jì)和社會發(fā)展的意義;我國能夠真正建立新型民族的原因。《處理民族關(guān)系的原則:平等、團(tuán)結(jié)、共同繁榮》是高一《政治生活》第三單元第七課內(nèi)容,本課內(nèi)容由三目構(gòu)成,第一目:雪域高原的歷史性跨越,第二目:我國處理民族關(guān)系的基本原則,第三目:鞏固社會主義民族關(guān)系,我們該做什么,能做什么。
一、教材分析第四單元“發(fā)展社會主義市場經(jīng)濟(jì)”旨在培養(yǎng)社會主義的建設(shè)者,高中生是未來社會主義現(xiàn)代化建設(shè)的主力軍,是將來參與市場經(jīng)濟(jì)活動的主要角色,承擔(dān)著全面建設(shè)小康社會的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結(jié)構(gòu)如下:首先謳歌我國人民的生活水平達(dá)到總體小康這一偉大成就,然后從微觀和宏觀兩個方面介紹總體小康的成就。同時指出,我國現(xiàn)在達(dá)到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經(jīng)濟(jì)建設(shè)的新要求”。這一目專門介紹全面建設(shè)小康社會的經(jīng)濟(jì)目標(biāo),也是學(xué)生要重點把握的內(nèi)容。二、教學(xué)目標(biāo)(一)知識目標(biāo)(1)識記總體小康的建設(shè)成就在宏觀和微觀上的表現(xiàn),全面建設(shè)小康社會的經(jīng)濟(jì)建設(shè)目標(biāo)。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會建設(shè)進(jìn)程是不平衡的發(fā)展過程。(3)運用所學(xué)知識,初步分析全面建設(shè)小康社會的意義。
一、描述圓周運動的物理量 探究交流 打籃球的同學(xué)可能玩過轉(zhuǎn)籃球,讓籃球在指尖旋轉(zhuǎn),展示自己的球技,如圖5-4-1所示.若籃球正繞指尖所在的豎直軸旋轉(zhuǎn),那么籃球上不同高度的各點的角速度相同嗎?線速度相同嗎? 【提示】 籃球上各點的角速度是相同的.但由于不同高度的各點轉(zhuǎn)動時的圓心、半徑不同,由v=ωr可知不同高度的各點的線速度不同.
王安石,字介甫,號半山。北宋著名政治家、思想家、文學(xué)家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風(fēng)月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭先?!眰魇牢募小锻跖R川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長,世人哄傳之詩句莫過于《泊船瓜洲》中的“春風(fēng)又綠江南岸,明月何時照我還?!鼻矣忻鳌豆鹬ο恪返取=榻B之后設(shè)置這樣的導(dǎo)入語:今天我們共同走進(jìn)王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標(biāo)題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學(xué)生初步了解將要學(xué)到的基本內(nèi)容,了解文章大意及思想意圖,使學(xué)生對課文內(nèi)容形成整體感知。首先,我會讓學(xué)生根據(jù)課前預(yù)習(xí),出聲誦讀課文,同時注意朗讀的快慢、停頓、語調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會引導(dǎo)學(xué)生談?wù)勊惺堋W(xué)生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢,有對景物的贊美和對歷史的感喟。
這幾段內(nèi)容傳達(dá)出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,愛護(hù)大自然”的主旨內(nèi)涵,因此讓學(xué)生通過自由朗讀的方式,再次體會馮至對這個消逝了的山村的細(xì)致的美好的描繪,感悟馮至傳達(dá)出的對生命,對自然的理解和思考。5.最后一個自然段的解讀依然是交給學(xué)生,先齊讀課文,再讓學(xué)生自主分享自己的體會或疑惑。但在這一環(huán)節(jié)我也設(shè)計了兩個我認(rèn)為必須解答的兩個問題,一是怎么理解“在風(fēng)雨如晦的時刻”;二是“意味不盡的關(guān)聯(lián)”是指什么。我認(rèn)為這兩個問題一個涉及到寫作背景,一個涉及到對全文主旨的一個整體把握,能夠進(jìn)一步幫助學(xué)生理解散文的深刻內(nèi)涵和主旨,讓學(xué)生有意識的在閱讀散文過程中通過背景知識進(jìn)行理解。既尊重學(xué)生的個性化解讀,又能夠讓學(xué)生有意義學(xué)習(xí),完成預(yù)設(shè)的教學(xué)目標(biāo)。如果學(xué)生沒有提到這兩處,那我就需要做出補(bǔ)充。
答案:銅車馬的輝煌,來自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢??梢哉f,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實意義?觀點一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動力。第三,執(zhí)著是企業(yè)走得長久的底氣。改革開放40 多年來,我國涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂所在。觀點二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢養(yǎng)家糊口的工具,而是樹立起對職業(yè)敬畏、對工作執(zhí)著、對產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗。我國制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。
(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀?!队菝廊恕肥窃~中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術(shù)魅力,對于陶冶學(xué)生的情操,豐富和積淀學(xué)生的人文素養(yǎng)意義非凡。(二)說學(xué)情總體來說,所教班級的學(xué)生基礎(chǔ)不強(qiáng),學(xué)習(xí)意識略有偏差,在學(xué)習(xí)過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機(jī)會,他們才能更好地達(dá)成教學(xué)目標(biāo)。(三)說教學(xué)目標(biāo)根據(jù)教學(xué)內(nèi)容和學(xué)情分析,確定如下教學(xué)目標(biāo)(1)探究這首詞的內(nèi)涵,了解李煜及其創(chuàng)作風(fēng)格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標(biāo)的全體作為總體,每一個調(diào)查對象的相應(yīng)指標(biāo)作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進(jìn)行。為了及時掌握全國人口變動狀況,我國每年還會進(jìn)行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進(jìn)行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
1、知識與技能 (1)認(rèn)識勻速圓周運動的概念,理解線速度的概念,知道它就是物體做勻速圓周運動的瞬時速度;理解角速度和周期的概念,會用它們的公式進(jìn)行計算; (2)理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T; (3)理解勻速圓周運動是變速運動?! ?、過程與方法 (1)運用極限法理解線速度的瞬時性.掌握運用圓周運動的特點如何去分析有關(guān)問題; (2)體會有了線速度后.為什么還要引入角速度.運用數(shù)學(xué)知識推導(dǎo)角速度的單位。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認(rèn)識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點坐標(biāo)為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個焦點的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.