1.做學(xué)問之前首先學(xué)會做人2.知識文化修養(yǎng)和思想道德修養(yǎng)的關(guān)系三.追求更高的思想道德目標(biāo)㈤ 說教學(xué)評價和反思:1.這節(jié)課主要是以學(xué)生為主體,老師為主導(dǎo),讓學(xué)生充分發(fā)表自己的看法,把理論的知識結(jié)合在實際的日常生活中,鼓勵學(xué)生充分發(fā)表自己的意見,能調(diào)動學(xué)生學(xué)習(xí)的積極性,達到教學(xué)目的。這節(jié)課學(xué)生討論,發(fā)言的機會很多,但由于我校的學(xué)生的基礎(chǔ)薄弱,在發(fā)言時難免偏離老師引導(dǎo)的方向,甚至出現(xiàn)毫不相干的說法,由于本人經(jīng)驗不夠此時如何去引導(dǎo)他們可能做的還不夠好。2.新課程的教學(xué),如何突破書本知識的局限,延伸更深層次的內(nèi)容是一個難題。本節(jié)課在知識的處理上,把道德的重要性與道德的層次兩個知識點補充了進去,目的是讓學(xué)生在學(xué)習(xí)之前有一個情感的鋪墊,從而更好地達到教學(xué)目標(biāo)。
(3)內(nèi)陸和中西部城鎮(zhèn)主要以煤和火電為主;廣大農(nóng)村和邊遠地區(qū)大多正從使用農(nóng)作物秸稈等生物能源。(4)人均能源資源不足。我國是世界第三大能源生產(chǎn)國和第二大能源消費國,而我國能源短缺,特別是油氣資源短缺已成為制約我國經(jīng)濟發(fā)展的重要因素。相關(guān)數(shù)據(jù)——煤炭、石油和天然氣的人均資源占有量只有95t,世界平均值為209t,約是世界人均值的1/2;我國人均石油可采儲量3t,世界平均值為28t,約為世界平均值的1/10。我國人均能源消費量不足1.2噸標(biāo)準(zhǔn)煤,居世界89位,不足世界人均能源消費水平的一半,僅占發(fā)達國家的1/5~1/10。其中人均消費650kg標(biāo)準(zhǔn)煤,是世界平均額的95%;人均消費石油相當(dāng)145kg標(biāo)準(zhǔn)煤,為世界平均數(shù)的16.8%;人均消費天然氣相當(dāng)17.7kg標(biāo)準(zhǔn)煤,為世界平均數(shù)的3.9%;人均消費電力501.5kWh,為世界平均水平的25%。(5)是能源消費結(jié)構(gòu)不合理,突出存在著一低兩高:即電能消費比例低,非商品生物能源消費量高,一次性商品能源消費中原煤消費比重高。原煤消費達到75%,遠高于26.2%的世界平均水平。
共享實驗收集的信息,分享實驗探究的結(jié)論,體驗收獲的樂趣。 小結(jié)拓展 這節(jié)課由大家感興趣的球類運動和彈弓游戲,提出了功與速度變化關(guān)系的問題,利用倍增思想解決測量對物體做功的問題,使用我們熟悉的器材設(shè)計了探究方案,并進行實驗探究,采用圖像法進行數(shù)據(jù)處理,初步得出W∝V2的關(guān)系。在我們這節(jié)課探究以前,科學(xué)家就通過試驗和理論的方法,已經(jīng)總結(jié)出了功與速度變化的定量關(guān)系。人類社會也在社會生活和生產(chǎn)的各個領(lǐng)域予以利用。比如,古代的戰(zhàn)爭武器拋石器、大型弓弩,以及現(xiàn)代飛機彈射系統(tǒng)、還有機器人行走等等,希望同學(xué)在今后的學(xué)習(xí)中注意留心生活中的物理和社會中的物理。 領(lǐng)會總結(jié)。培養(yǎng)概括總結(jié)的能力,進一步鞏固、感悟、提升實驗探究中獲得的思維能力及動手能力。感悟社會中的物理,認識物理學(xué)對科技進步以及文化和社會發(fā)展的影響。 列舉學(xué)生知道的社會中做功使物體速度變化的例子,增強學(xué)生將物理知識應(yīng)用于生活和生產(chǎn)的意識,培養(yǎng)學(xué)生的社會參與意識和對社會負責(zé)任的態(tài)度。
1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時,EF=OE=OF=1,當(dāng)∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標(biāo)為(0,5/3).
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
(設(shè)計意圖:讓學(xué)生充分表述自己的想法,強化學(xué)生的應(yīng)用意識,培養(yǎng)學(xué)生解決實際問題的能力。從中發(fā)現(xiàn)可能性會隨著數(shù)量的變化而變化的。)(四)歸納總結(jié),完善認知1、學(xué)生匯報學(xué)習(xí)所得。(使學(xué)生體驗探索成功的喜悅)2、教師評價學(xué)習(xí)態(tài)度。(讓學(xué)生感受學(xué)習(xí)數(shù)學(xué)我能行)五、板書科學(xué)設(shè)計簡單明了,重點突出,加深對所學(xué)知識的理解和掌握。通過以上創(chuàng)新處理,營造寬松的學(xué)習(xí)氛圍,為學(xué)生創(chuàng)造聯(lián)想猜測、動手操作、合作交流、自主探究、解決問題的機會,使學(xué)生在“自主——合作——探究”的學(xué)習(xí)過程中,體驗數(shù)學(xué)探索成功的喜悅,體會到數(shù)學(xué)課堂充滿生命的活力。以上是我對本節(jié)課的一些設(shè)想,還有待于在實踐中去完善,如有不當(dāng)之處,敬請各位專家評委給予批評和指正。
單分析。一、說教材的地位和作用本節(jié)課的內(nèi)容是人教版小學(xué)數(shù)學(xué)三年級下冊第五單元的內(nèi)容。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了兩位數(shù)乘一位數(shù)筆算和兩位數(shù)乘整十?dāng)?shù)的口算,估算和筆算。本節(jié)課學(xué)習(xí)的內(nèi)容就是對以上知識點的梳理與鞏固復(fù)習(xí)。二、說教學(xué)目標(biāo)根據(jù)本教材的結(jié)構(gòu)和內(nèi)容分析,結(jié)合三年級學(xué)生的認知結(jié)構(gòu)及其心理特征,我制定了以下的教學(xué)目標(biāo):1、通過復(fù)習(xí),把“兩位數(shù)乘兩位數(shù)”這一單元的有關(guān)知識系統(tǒng)化、條理化。2、通過自主探索與合作學(xué)習(xí),在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上理清知識脈絡(luò)并進行分析歸納,掌握有序整理的方法,提高學(xué)習(xí)能力。3、經(jīng)歷獨立整理、相互交流、綜合應(yīng)用的過程,感受學(xué)習(xí)的快樂。 三、說教學(xué)的重、難點本著《小學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)》,在吃透教材基礎(chǔ)上,我確定了以下的教學(xué)重點和難點。教學(xué)重點:用兩位數(shù)乘兩位數(shù)解決問題。 教學(xué)難點:筆算乘法積的定位。為了講清教材的重、難點,使學(xué)生能夠達到本節(jié)課設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劇?/p>
五、說學(xué)情小學(xué)六年級的學(xué)生已具備初步的邏輯思維能力,但仍以形象思維為主,教材在小學(xué)中年級的數(shù)學(xué)教學(xué)中,已經(jīng)逐漸借助推理與知識遷移來完成,并結(jié)合教材挖掘、創(chuàng)造條件開始滲透數(shù)形結(jié)合思想。進入中高年級后,學(xué)生邏輯思維能力已有一定發(fā)展,為了使學(xué)生更直觀的理解知識,同時又滿足學(xué)生邏輯思維能力的發(fā)展,因此本節(jié)教材在編排上體現(xiàn)了先“數(shù)”后“形”的順序,把形象真正放在“支撐”地位,從而為培養(yǎng)學(xué)生的邏輯能力而服務(wù)。六、說教法學(xué)法為了在教學(xué)過程中充分體現(xiàn)學(xué)生的主體地位和教師的主導(dǎo)作用,本節(jié)采用教師引導(dǎo)和學(xué)生自主學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生積極探索和團結(jié)協(xié)作的精神,同時采用PPT課件直觀形象的演示功能,強化理解,突破重點、難點并調(diào)動學(xué)生的學(xué)習(xí)積極性。1.將問題直接呈現(xiàn)在學(xué)生面前,引導(dǎo)學(xué)生對題目的內(nèi)容進行理解,在明確了題目的要求之后,教師把時間還給學(xué)生,引導(dǎo)學(xué)生自主思考問題,通過具體形象教具的支撐幫助學(xué)生發(fā)展規(guī)律。2.利用小組合作學(xué)習(xí),在合作交流中通過看一看,議一議,借助直觀教具發(fā)現(xiàn)理解規(guī)律。3.利用微課對差生進行“補學(xué)”。在學(xué)生探究匯報之后,針對學(xué)習(xí)有困難的學(xué)生利用微課視頻直觀鞏固知識。
一、說教材圖形的放大與縮小是人教版數(shù)學(xué)六年級下冊第四單元《比例》中的內(nèi)容。以前學(xué)生對比、比例、比例尺有了初步的認識和了解,對比、比例的意義進行了研究,通過學(xué)習(xí),學(xué)生對比、比例、比例尺有了很深刻的認識。二、說教法、學(xué)法教法:本節(jié)課我采用具體的實驗操作,讓學(xué)生動手畫一畫、比一比、看一看等方法,從而發(fā)現(xiàn)圖形的放大與縮小與原圖比較只是大小變化,形狀沒變。學(xué)法:教學(xué)中充分發(fā)揮學(xué)生的主體作用。學(xué)生能做的盡量讓學(xué)生自己做,學(xué)生能想的盡量讓學(xué)生自己想,學(xué)生能說的盡量讓學(xué)生自己說。學(xué)生不能想的,教師啟發(fā)、引導(dǎo)學(xué)生想,學(xué)習(xí)的整個學(xué)習(xí)過程圍繞著教師創(chuàng)設(shè)的問題情境之中。 三、教學(xué)重、難點重點:能在方格紙上按一定的比將簡單圖形放大或縮小。難點:使學(xué)生知道圖形按一定的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變,從而體會圖形相似變化的特點。
一、說教材圖形的放大與縮小是人教版數(shù)學(xué)六年級下冊第四單元《比例》中的內(nèi)容。以前學(xué)生對比、比例、比例尺有了初步的認識和了解,對比、比例的意義進行了研究,通過學(xué)習(xí),學(xué)生對比、比例、比例尺有了很深刻的認識。二、說教法、學(xué)法教法:本節(jié)課我采用具體的實驗操作,讓學(xué)生動手畫一畫、比一比、看一看等方法,從而發(fā)現(xiàn)圖形的放大與縮小與原圖比較只是大小變化,形狀沒變。學(xué)法:教學(xué)中充分發(fā)揮學(xué)生的主體作用。學(xué)生能做的盡量讓學(xué)生自己做,學(xué)生能想的盡量讓學(xué)生自己想,學(xué)生能說的盡量讓學(xué)生自己說。學(xué)生不能想的,教師啟發(fā)、引導(dǎo)學(xué)生想,學(xué)習(xí)的整個學(xué)習(xí)過程圍繞著教師創(chuàng)設(shè)的問題情境之中。 三、教學(xué)重、難點重點:能在方格紙上按一定的比將簡單圖形放大或縮小。難點:使學(xué)生知道圖形按一定的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變,從而體會圖形相似變化的特點。
(2)研究正方形:通過前面這個環(huán)節(jié),學(xué)生已經(jīng)掌握了研究長方形特征的方法,很自然地拿出一個正方形,通過看、數(shù)、量、折、小組討論、展示交流等活動歸納出正方形的特征:正方形四條邊都相等,四個角都是直角,這也是本節(jié)課的重點內(nèi)容,但并不是難點,可由中下學(xué)生來完成,給他們以展示技能的機會。通過一系列的探究活動,學(xué)生的學(xué)習(xí)積極性已被調(diào)動,思維正處于活躍階段,此時我把學(xué)生帶到本節(jié)課的難點環(huán)節(jié)(3)想一想,長方形和正方形有什么相同點和不同點?對于學(xué)生的思考結(jié)果,老師并不急于回答,而是引導(dǎo)學(xué)生從長方形和正方形邊和角的共同點去進行研究分析,讓學(xué)生充分經(jīng)歷思考學(xué)習(xí)的過程,最后才巧妙地借助多媒體,直觀地幫學(xué)生理解正方形是一個特殊的長方形,在這里多媒體化靜為動,化抽象為直觀,較好地幫學(xué)生突破了難點。至此,學(xué)生已經(jīng)掌握了長方形、正方形的有關(guān)知識,此時,他們急于找到一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生帶入到“應(yīng)用新知,理解提高”的環(huán)節(jié)。
今天我說稿的題目是:北師大版二年級數(shù)學(xué)上冊第單元第一課時的《長頸鹿和小鳥》。再此之前學(xué)生已經(jīng)對6-9的乘法口訣非常熟悉了,而本節(jié)是讓學(xué)生如何熟悉運用乘法口訣來求商及解決生活中的一些實際問題?;趯?nèi)容的理解和學(xué)生情況的掌握,我把本節(jié)課的教學(xué)目標(biāo)定為:知識與技能:學(xué)習(xí)用乘法口訣求商,熟練并運用6—9的乘法口訣求商,體會除法與乘法的內(nèi)在聯(lián)系。過程與方法通過動手、動腦,重點提高學(xué)生的運算能力,培養(yǎng)學(xué)生的應(yīng)用意識,以及用不同方法解決生活中簡單問題的能力。態(tài)度與情感通過情境的設(shè)計激發(fā)學(xué)生學(xué)數(shù)學(xué)的內(nèi)心需要,調(diào)動學(xué)生的積極性。為了更好的實現(xiàn)以上的教學(xué)目標(biāo),我把本節(jié)課的重點確定為:進一步體會乘、除法之間的關(guān)系,能比較熟練地應(yīng)用6-9的乘法口訣求商。同時,把除法知識在生活中的靈活運用以及估算的實際運用作為本節(jié)的難點。
3、情感態(tài)度與價值觀:培養(yǎng)學(xué)生的觀察、分析和抽象概括能力,體會教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學(xué)的好奇心。(三)教學(xué)重難點根據(jù)以上分析,結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的思維特點,我將本節(jié)課的教學(xué)重點確立為引導(dǎo)學(xué)生認識倍數(shù)與因數(shù),能在1——100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù)。而將探索出找一個數(shù)的倍數(shù)的方法確定為本節(jié)課的教學(xué)難點。二、說學(xué)情五年級的學(xué)生觀察、分析、概括歸納能力已經(jīng)逐步形成,他們愿意自己觀察、分析、概括整理,找出規(guī)律。他們在探索新知識上,主動性比較強,同時他們思維活躍,已具備了一定的探究能力和小組合作意識。并且學(xué)生在學(xué)習(xí)本節(jié)課之前,學(xué)生學(xué)過整數(shù)的認識,能熟練運用乘除法運算法則解決相應(yīng)的乘除法運算,是本節(jié)課學(xué)習(xí)倍數(shù)與因數(shù)相關(guān)內(nèi)容的基礎(chǔ)。
學(xué)生掌握數(shù)學(xué)概念過程的本身就是一個把教材知識結(jié)構(gòu)轉(zhuǎn)化成自己認知結(jié)構(gòu)的過程,這一過程的結(jié)果可能形成正確的數(shù)學(xué)概念,也可能由于主、客觀原因而形成一些錯誤的數(shù)學(xué)概念。因此,在這一階段有兩大任務(wù)要完成,一是強化已經(jīng)形成的正確認識,二是修正某些錯誤認識,使掌握的概念都能正確反映數(shù)學(xué)對象的本質(zhì)屬性。在情境中解決問題是從新課教學(xué)到學(xué)生獨立作業(yè)之間的一個重要環(huán)節(jié),目的在于鞏固所學(xué)知識,并把知識轉(zhuǎn)化為技能。教材“試一試”和“練一練”的第1、2題,讓學(xué)生通過觀察、思考,并且在有了比較充分的感性體驗的基礎(chǔ)上揭示體積概念及讓學(xué)生充分感受同一物體形狀變了,但體積保持不變,增強實際體驗?!熬氁痪殹钡?題,讓學(xué)生體會到如果每個杯子的大小不同,那么3杯就可能等于2杯,這是為后面體積單位作鋪墊。