多年的小學(xué)教學(xué)經(jīng)驗告訴我:小學(xué)高年級的學(xué)生已有一定的自學(xué)能力,關(guān)鍵是看我們設(shè)置的情景和學(xué)生的生活是不是緊密聯(lián)系,是不是喚起了學(xué)生的已有表象,并不和使用多種媒體有絕對聯(lián)系。所以在學(xué)習(xí)例題中我引導(dǎo)學(xué)生自主探討,從中發(fā)現(xiàn)問題,提出問題,最后獨立解決問題,從而訓(xùn)練學(xué)生數(shù)學(xué)語言表達(dá)能力,發(fā)展學(xué)生的創(chuàng)造性思維。⒋質(zhì)疑問難。㈣新知總結(jié)對上面所學(xué)知識,教師引導(dǎo)學(xué)生作一次歸納總結(jié),讓學(xué)生明確要求圓周長時,必須設(shè)法求得圓的直徑或半徑。這樣使學(xué)生對求圓周長有明確的認(rèn)識,進(jìn)一步深化重點。㈤新知運用國家教委加強(qiáng)與改進(jìn)小學(xué)數(shù)學(xué)教學(xué)的意見中提出:基礎(chǔ)訓(xùn)練是使學(xué)生融會貫通地掌握知識,形成熟練技能和發(fā)展智力的重要手段。所以在本節(jié)練習(xí)中我以基礎(chǔ)練習(xí)為主,適當(dāng)補(bǔ)充了提高練習(xí)。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學(xué)生認(rèn)識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導(dǎo)對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學(xué)生掌握對數(shù)式與指數(shù)式的互化;通過實例推導(dǎo)對數(shù)的運算性質(zhì),讓學(xué)生準(zhǔn)確地運用對數(shù)運算性質(zhì)進(jìn)行運算,學(xué)會運用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進(jìn)行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。
師:同學(xué)們真聰明,小精靈的問題回答出來了,現(xiàn)在就讓我們一起走進(jìn)兒童樂園吧。(出示課件)請大家注意觀察,兒童樂園中都有哪些景點?師:從兒童樂園出發(fā)經(jīng)過百鳥園去猴山一共有幾條路?請同學(xué)們仔細(xì)觀察:從兒童樂園到百鳥園有幾條路?從百鳥園去猴山有幾條路?(生回答。)師:我們給這5條路分別標(biāo)上序號。(課件演示)現(xiàn)在請同學(xué)們想一想從兒童樂園的入口經(jīng)過百鳥園到達(dá)猴山一共有幾條路線?請同學(xué)們把答案寫在記錄紙上。(生匯報。)師:路線設(shè)計好了,讓我們一起到猴山看一看可愛的小猴子吧?。ǚ藕锷降匿浵?。)師:看,它們是一對著名的動物小明星,會演雜技的小猴寶寶和貝貝,你們想和它們照相留念嗎?生:想。師:好!那我們每個人都和寶寶、貝貝各照一張相片,同學(xué)們想一想,我們?nèi)?0個人一共要照多少張相片兒呢?
一、教材分析:本節(jié)知識,是在學(xué)生建立了小數(shù)的概念,學(xué)習(xí)了小數(shù)性質(zhì)以及小數(shù)點移動引起小數(shù)大小變化的基礎(chǔ)上進(jìn)行的,包括了復(fù)名數(shù)化成小數(shù)和復(fù)名數(shù)化成低級和高級單位單名數(shù)。教材重在向?qū)W生滲透“數(shù)學(xué)來源于生活,又服務(wù)于生活”的理念,以小數(shù)在生活中的實際應(yīng)用為切入點,從學(xué)生的生活經(jīng)驗和知識背景出發(fā)創(chuàng)設(shè)情境,引導(dǎo)學(xué)生進(jìn)行積極的體驗,從而體會到數(shù)學(xué)的內(nèi)在價值。二、說教法這節(jié)課,在教法和學(xué)法上力求體現(xiàn)以下幾個方面:1、堅持以“學(xué)生為主題,老師為主導(dǎo),訓(xùn)練為主線”的原則,主要采用啟發(fā)誘導(dǎo)的教學(xué)方法,引導(dǎo)學(xué)生親歷知識的觀察、發(fā)現(xiàn)、應(yīng)用的過程。引導(dǎo)學(xué)生利用遷移法,討論法,自主探究法對新知識進(jìn)行主動學(xué)習(xí)。2、注重創(chuàng)設(shè)情境,從學(xué)生已有的小數(shù)知識出發(fā),緊密結(jié)合具體的生活情境和活動情境,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)目標(biāo)1、通過教學(xué),學(xué)生懂得應(yīng)用加法運算定律可以使一些分?jǐn)?shù)計算簡便,會進(jìn)行分?jǐn)?shù)加法的簡便計算.2、培養(yǎng)學(xué)生仔細(xì)、認(rèn)真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點整數(shù)加法運算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計算簡便.教學(xué)難點整數(shù)加法運算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計算簡便.教學(xué)過程設(shè)計一、復(fù)習(xí)準(zhǔn)備(演示課件:整數(shù)加法運算定律推廣到分?jǐn)?shù)加法)下載1.教師:整數(shù)加法的運算定律有哪幾個?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分?jǐn)?shù)加法呢?這節(jié)課我們就一起來研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運算定律推廣到分?jǐn)?shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
(二)說學(xué)法指導(dǎo)把“學(xué)習(xí)的主動權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機(jī)會,充分利用學(xué)生已獲得的生活體驗,通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識,從而增強(qiáng)教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會本節(jié)課的重點難點。(三)說教學(xué)手段:我運用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場景,營造一個形象生動的課堂氣氛。三、說教學(xué)過程教學(xué)過程堅持"情境探究法",分為"導(dǎo)入新課——推進(jìn)新課——走進(jìn)生活"三個層次,環(huán)環(huán)相扣,逐步推進(jìn),幫助學(xué)生完成由感性認(rèn)識到理性認(rèn)識的飛躍。下面我重點簡述一下對教學(xué)過程的設(shè)計。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學(xué)好這部分的知識對于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識的關(guān)系,分析辯證否定的實質(zhì)是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關(guān)。
【教師總結(jié):聯(lián)合國的會徽的世界地圖象征著聯(lián)合國是一個世界性的國際組織;圖案中得橄欖枝象征著和平。聯(lián)合國采取了很多措施以實現(xiàn)它的宗旨,如對于朝鮮違反國際法規(guī)進(jìn)行核試驗,聯(lián)合國給予警告和制裁,充分體現(xiàn)了它維護(hù)國際和平與安全,促進(jìn)國際合作與發(fā)展的宗旨。】對于中國與聯(lián)合國的關(guān)系這部分內(nèi)容,我將請閱讀教材92頁幾幅圖片及材料內(nèi)容,設(shè)置活動探究課中國在聯(lián)合國的聲音和身影,請合作討論思考以下兩個問題,中國與聯(lián)合國的關(guān)系;列舉事實說明中國在國際社會中的重要作用。 教師通過剖析中國在聯(lián)合國的地位和作用,引導(dǎo)學(xué)生理解中國在國際社會中發(fā)揮著重要作用,是負(fù)責(zé)任的國家;同時培養(yǎng)學(xué)生綜合運用知識分析說明問題的能力,使學(xué)生感受作為中國人的自豪?!窘處熆偨Y(jié):中國是聯(lián)合國的創(chuàng)始國之一,中國作為聯(lián)合國的創(chuàng)始國和安理會常任理事國之一,一貫遵循聯(lián)合國憲章的宗旨和原則,積極參與聯(lián)合國及其專門機(jī)構(gòu)有利于世界和平和發(fā)展的活動?!?/p>
(二)師生互動,驗證猜想活動二:學(xué)生自由探索,圓柱體積計算方法以小組為單位設(shè)計出一種自己學(xué)過的知識計算圓柱體積的方法,通過合作,學(xué)生想到的辦法可能有:①把橡皮泥捏成圓柱體,再捏成長方體,量出長方體的長、寬、高。算出長方體的體積,也就是圓柱的體積。②把圓柱形的杯子裝滿沙子,鋪平,然后把沙子倒入較大的長方體的盒子中,量出長方體盒子的長、寬及沙子的高,算出沙子的體積,也就是圓柱的體積。如果杯子的厚度忽略不計的話。杯子的容積就是杯子的體積。③把一個圓柱體放到裝有(正)長方體容器中,水會上升,上升的水的體積就是圓柱的體積。(這一活動的設(shè)計,是通過觀察力求讓學(xué)生體驗到我們在計算圓柱的體積時都是把圓柱的體積轉(zhuǎn)化為其他形體的體積來進(jìn)行計算的。由此,也就可以驗證學(xué)生的猜想是否準(zhǔn)確,但是為了不影響學(xué)生的求知欲,我設(shè)計了這樣一個問題:你能用這些方法來計算我們的學(xué)校門口這根圓柱形柱子的體積嗎?
首先,學(xué)生帶著如下三個問題自學(xué)課文,(電腦出示):(1)用什么方法可以得到計算圓錐體積的公式?(2)圓柱和圓錐等底等高是什么意思?(3)得出了什么結(jié)論?圓錐體積的計算公式是什么?其次,學(xué)生操作實驗,先讓學(xué)生比較圓柱和圓錐是等底等高。再讓學(xué)生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實驗,得出倒三次正好倒?jié)M。使學(xué)生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的,圓柱的體積是圓錐的3倍。第三、小組討論,全班交流,歸納,推導(dǎo)出圓錐體積的計算公式:V= Sh。第四、讓學(xué)生做在小圓錐里裝滿沙土往大圓柱中倒的實驗,得出倒三次不能倒?jié)M。再次強(qiáng)調(diào),只有等底等高的圓柱和圓錐才存在著一定的倍數(shù)關(guān)系。第五、師生小結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。
這節(jié)課的教學(xué)內(nèi)容是在學(xué)生學(xué)習(xí)掌握了圓和圓柱的相關(guān)知識的基礎(chǔ)上而安排的。認(rèn)識圓錐,首先要了解它的特征。因此教材把它安排在這一部分內(nèi)容的第一節(jié),為下面的學(xué)習(xí)做好鋪墊。由于圓柱與圓錐的知識是密切相關(guān)的,因而教材把圓錐的認(rèn)識安排在圓柱的認(rèn)識之后,為學(xué)習(xí)圓錐的特征以及體積起到了一個橋梁的作用。二、說學(xué)情我所教學(xué)班級的學(xué)生是山區(qū)的孩子,經(jīng)過前面的學(xué)習(xí)他們的主觀性和能動性已經(jīng)有較大的提高,能夠有意識地主動探索未知世界。同時,他們的思維能力、分析問題的意識和能力也有明顯的提高,也有一定的動手操作能力。但抽象邏輯思維在很大程度上仍然靠感性經(jīng)驗支持,加上他們生活在山區(qū),對新生事物的見識面相對較窄,所以在教學(xué)時適宜恰當(dāng)?shù)剡\用遠(yuǎn)程教育資源,既能創(chuàng)設(shè)教學(xué)情境,又能將抽象的知識直觀化,更加直觀地體驗感知圓錐的特征。
學(xué)生的學(xué)習(xí)活動是一個生動活潑而富有個性的過程,為了把學(xué)生探索的陣地從課堂延伸到課外,引導(dǎo)學(xué)生主動地應(yīng)用所學(xué)的知識和方法解決實際問題。我又設(shè)計了以下練習(xí)題:1、腦筋樂園:學(xué)校田徑運動會即將舉行,你有辦法幫學(xué)校在操場上畫出一個半徑為50米的圓嗎?2、(1)應(yīng)用圓的知識解釋下列現(xiàn)象,并寫出來。為什么井蓋也得做成圓形的?人們在圍觀的時,為什么會自然地圍成圓形?(2)搜集有關(guān)圓的資料。貼到教室的數(shù)學(xué)角上,大家共享。3、畫出各種大小、不同顏色的圓,組合出一幅美麗的圖畫。(設(shè)計意圖)將學(xué)生探索的陣地從課堂延伸到課外,引導(dǎo)學(xué)生主動地應(yīng)用所學(xué)知識和方法解決實際問題。(我認(rèn)為把本句提前,這里刪去,這樣顯得更連貫)(五)全課總結(jié)1、讓學(xué)生談收獲,進(jìn)行自我評價。2、我對整節(jié)課進(jìn)行知識要點歸納和對學(xué)生學(xué)習(xí)情況進(jìn)行評價。(這樣總結(jié),我注重學(xué)生的自我評價,自我體驗和個性發(fā)展。即學(xué)生情感的體驗和收獲)(我認(rèn)為藍(lán)色字那句可刪去)
教學(xué)活動是師生互動、生生互動的過程,傳統(tǒng)的教,將讓位于學(xué)生的學(xué),學(xué)生才是學(xué)習(xí)的主人,一切只有從學(xué)生出發(fā),才能有效的促進(jìn)教學(xué),才能有效的促進(jìn)學(xué)生的發(fā)展。教師要為學(xué)生創(chuàng)造一個自主、探索的空間。根據(jù)教材的特點及學(xué)生的認(rèn)知規(guī)律,我運用電教手段,在學(xué)生自主探究、小組合作、教師引導(dǎo)的學(xué)習(xí)方式中進(jìn)行教學(xué)。問題是數(shù)學(xué)的心臟,數(shù)學(xué)思維的過程就是不斷地提出問題和解決問題的過程,因此,在數(shù)學(xué)課堂教學(xué)中,教師或提出問題設(shè)置懸念,以喚起學(xué)生的學(xué)習(xí)需要,激發(fā)興趣;或設(shè)計問題串層層深入突破難點;或拓展問題使學(xué)生加深對概念的理解;或提出如何歸納小結(jié)整理新知的問題,總之,在課堂中教師及時地向?qū)W生提出新的數(shù)學(xué)問題。為更深入地進(jìn)行數(shù)學(xué)思維活動提供動力和方向,使數(shù)學(xué)思維活動持續(xù)不斷地向前發(fā)展。
1、完成練習(xí)十五第1題。(1)學(xué)生獨立完成計算。(2)指名板演,交流計算方法。提問:你是按照什么運算順序計算的?指出:分?jǐn)?shù)加減混合運算的運算順序與整數(shù)相同,參與運算的幾個分?jǐn)?shù),可以分步通分,分步計算;也可以一次通分,再計算。計算結(jié)果要約成最簡分?jǐn)?shù)。[練習(xí)十五里異分母分?jǐn)?shù)加減混合運算的純計算題比較少,僅第1題里有4道。教學(xué)中適當(dāng)補(bǔ)充三個分?jǐn)?shù)加減混合運算的練習(xí)也是可以的,但不要耗費學(xué)生過多的學(xué)習(xí)精力。如果學(xué)生計算發(fā)生錯誤,要仔細(xì)分析原因,有針對性地采取有效的解決措施。]2、完成練習(xí)十五第2題。(1)讀題,理解題意,說說自己的思路。(2)學(xué)生獨立完成解答。10(3)+ 5(1)+ 6(1)= 30(9)+ 30(6)+ 30(5)= 30(20)= 3(2)(小時)(3)交流匯報,集體評價。3、完成練習(xí)十五第3題。(1)學(xué)生獨立完成(1)、(2)小題,說說自己是怎樣想的?(2)鼓勵學(xué)生根據(jù)題中的已知條件提出用分?jǐn)?shù)加、減法計算的不同問題,可以是一步計算的,也可以是兩步計算的,并讓學(xué)生嘗試解決提出的一些問題。
情感態(tài)度與價值觀:1、能夠在自己獨立調(diào)查、分析、思考的基礎(chǔ)上,積極參與小組討論,敢于發(fā)表自己的意見。2、使學(xué)生能夠綜合應(yīng)用所學(xué)的知識解決生活中的合理存款問題,感受數(shù)學(xué)與現(xiàn)實生活的密切關(guān)系。3、使學(xué)生認(rèn)識到數(shù)學(xué)應(yīng)用的廣泛性并培養(yǎng)學(xué)生的投資意識教學(xué)重點及難點1、使學(xué)生能自主探索合理存款的最大收益問題的方法。2、綜合應(yīng)用所學(xué)的知識認(rèn)真地分析數(shù)量關(guān)系,正確地解決日常生活中相關(guān)的實際問題。二、教學(xué)教法分析1.教法設(shè)計為了更好的突出重點,突破難點,完成教學(xué)目標(biāo),我結(jié)合學(xué)生的心理特點,首先采用“情境法”引出問題,再“學(xué)生匯報”調(diào)查結(jié)果。接著“師生互動探究”收益最大的存款方式,學(xué)生在“自主探索討論”中掌握根據(jù)實際情況合理存款。同時利用多媒體等教學(xué)手段,激發(fā)學(xué)生的學(xué)習(xí)興趣,幫助學(xué)生突破難點,提高課堂教學(xué)效率。2.學(xué)法指導(dǎo)本節(jié)課我重點立足于學(xué)生的“匯報”和“設(shè)計”,并采用學(xué)生整理信息口述、小組討論,同桌討論,合作計算等多種方法,使學(xué)生真正成為教學(xué)的主體,體會參與的樂趣,成功的喜悅。
【教學(xué)設(shè)想】《課程標(biāo)準(zhǔn)》指出:“實踐活動是培養(yǎng)學(xué)生進(jìn)行活動探索與合作交流的重要途徑?!痹谶@一理念的支持下,我設(shè)計了以小組為單位進(jìn)行測量實踐活動。一、將學(xué)生個體間的學(xué)習(xí)關(guān)系改變?yōu)椤敖M內(nèi)合作”學(xué)習(xí)的關(guān)系。通過讓學(xué)生小組合作活動學(xué)習(xí),培養(yǎng)學(xué)生的合作意識、集體觀念,培強(qiáng)了學(xué)生對集體的責(zé)任感受和榮譽(yù)感。二、根據(jù)學(xué)生的實際情況,我合理選取活動素材,向?qū)W生提供了具體有趣、富有一定啟發(fā)性的活動。全課共有四部分:第一部分,課前律動;課堂開始配以兒童喜歡的音樂,讓學(xué)生在輕松愉悅中進(jìn)入課堂。第二部分,復(fù)習(xí)舊知、引入新課;通過對前面所學(xué)知識的復(fù)習(xí),加深對長度單位“厘米”和“米”的認(rèn)識。第三部分,活動體驗、寓教于樂;這一部分共五個層次;第一層,選取了比較容易的活動,在木條上測量一米的長度,鞏固用尺子測量物體長度的方法;第二層,小組分工合作測量與同學(xué)們朝夕相處的課桌的長、寬、高這一實際問題,滲透了合作方法;
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。