提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中數(shù)學選修3組合與組合數(shù)教學設計

  • 人教A版高中數(shù)學必修一基本不等式教學設計(2)

    人教A版高中數(shù)學必修一基本不等式教學設計(2)

    《基本不等式》在人教A版高中數(shù)學第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學的嚴謹性。數(shù)學學科素養(yǎng)1.數(shù)學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數(shù)學運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.

  • 人教A版高中數(shù)學必修一任意角教學設計(2)

    人教A版高中數(shù)學必修一任意角教學設計(2)

    學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.

  • 人教A版高中數(shù)學必修二簡單隨機抽樣教學設計

    人教A版高中數(shù)學必修二簡單隨機抽樣教學設計

    知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。

  • 人教A版高中數(shù)學必修一任意角教學設計(1)

    人教A版高中數(shù)學必修一任意角教學設計(1)

    本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;

  • 人教A版高中數(shù)學必修一誘導公式教學設計(2)

    人教A版高中數(shù)學必修一誘導公式教學設計(2)

    本節(jié)主要內(nèi)容是三角函數(shù)的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結(jié)出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。

  • 人教A版高中數(shù)學必修一集合間的基本關系教學設計(1)

    人教A版高中數(shù)學必修一集合間的基本關系教學設計(1)

    本節(jié)內(nèi)容來自人教版高中數(shù)學必修一第一章第一節(jié)集合第二課時的內(nèi)容。集合論是現(xiàn)代數(shù)學的一個重要基礎,是一個具有獨特地位的數(shù)學分支。高中數(shù)學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數(shù)概念的基礎知識和必備工具。本小節(jié)內(nèi)容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關系的基礎上,進一步學習集合與集合之間的關系,同時也是下一節(jié)學習集合間的基本運算的基礎,因此本小節(jié)起著承上啟下的關鍵作用.通過本節(jié)內(nèi)容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結(jié)的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數(shù)學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數(shù)形結(jié)合思想。

  • 人教A版高中數(shù)學必修一集合的基本運算教學設計(1)

    人教A版高中數(shù)學必修一集合的基本運算教學設計(1)

    本節(jié)是新人教A版高中數(shù)學必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內(nèi)容打下了基礎。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當?shù)膯栴}情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關系及運算。 1.數(shù)學抽象:集合交集、并集、補集的含義;2.數(shù)學運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關系及運算。

  • 人教A版高中數(shù)學必修一集合的基本運算教學設計(2)

    人教A版高中數(shù)學必修一集合的基本運算教學設計(2)

    集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內(nèi)容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內(nèi)容打下了基礎. 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質(zhì)的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質(zhì)列不等式組,此過程中重點關注端點是否含“=”及?問題;

  • 人教A版高中數(shù)學必修一集合間的基本關系教學設計(2)

    人教A版高中數(shù)學必修一集合間的基本關系教學設計(2)

    第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關系,尤其學生學完兩個集合之間的關系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關系,體會直觀圖示對理解抽象概念的作用。數(shù)學學科素養(yǎng)1.數(shù)學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學運算:由集合間的關系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關系列不等式組, 此過程中重點關注端點是否含“=”及 問題;5.數(shù)學建模:用集合思想對實際生活中的對象進行判斷與歸類。

  • 人教A版高中數(shù)學必修一函數(shù)的零點與方程的解教學設計(1)

    人教A版高中數(shù)學必修一函數(shù)的零點與方程的解教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關系,本節(jié)課的內(nèi)容就是在此基礎上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;

  • 人教A版高中數(shù)學必修一函數(shù)的零點與方程的解教學設計(2)

    人教A版高中數(shù)學必修一函數(shù)的零點與方程的解教學設計(2)

    本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.

  • 人教A版高中數(shù)學必修一正切函數(shù)的圖像與性質(zhì)教學設計(2)

    人教A版高中數(shù)學必修一正切函數(shù)的圖像與性質(zhì)教學設計(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 人教A版高中數(shù)學必修一單調(diào)性與最大(?。┲到虒W設計(1)

    人教A版高中數(shù)學必修一單調(diào)性與最大(?。┲到虒W設計(1)

    《函數(shù)的單調(diào)性與最大(?。┲祡》系人教A版高中數(shù)學必修第一冊第三章第二節(jié)的內(nèi)容,本節(jié)包括函數(shù)的單調(diào)性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓?。在初中學習函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內(nèi)容是初中有關內(nèi)容的深化、延伸和提高函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎;在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的救開結(jié)合思想將貫穿于我們整個高中數(shù)學教學。

  • 人教A版高中數(shù)學必修二平面與平面垂直教學設計

    人教A版高中數(shù)學必修二平面與平面垂直教學設計

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?

  • 人教A版高中數(shù)學必修一充分條件與必要條件教學設計(2)

    人教A版高中數(shù)學必修一充分條件與必要條件教學設計(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學生總結(jié)本節(jié)課所學主要知識及解題技巧

  • 人教A版高中數(shù)學必修一單調(diào)性與最大(?。┲到虒W設計(2)

    人教A版高中數(shù)學必修一單調(diào)性與最大(?。┲到虒W設計(2)

    《函數(shù)的單調(diào)性與最大(?。┲怠肥歉咧袛?shù)學新教材第一冊第三章第2節(jié)的內(nèi)容。在此之前,學生已學習了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學習起著鋪墊作用。學生在初中已經(jīng)學習了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎上學生對增減性有一個初步的感性認識,所以本節(jié)課是學生數(shù)學思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎,對進一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,對解決各種數(shù)學問題有著廣泛作用。課程目標1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(小)值及其幾何意義;4、學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學學科素養(yǎng)

  • 人教A版高中數(shù)學必修一充分條件與必要條件教學設計(1)

    人教A版高中數(shù)學必修一充分條件與必要條件教學設計(1)

    本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).

  • 人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設計(2)

    人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設計(2)

    (4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 人教A版高中數(shù)學必修二平面與平面平行教學設計

    人教A版高中數(shù)學必修二平面與平面平行教學設計

    1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。

  • 人教A版高中數(shù)學必修二圓柱、圓錐、圓臺和球的表面積與體積教學設計

    人教A版高中數(shù)學必修二圓柱、圓錐、圓臺和球的表面積與體積教學設計

    1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!