提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

關(guān)于鎮(zhèn)街中層及以下干部隊伍建設(shè)的調(diào)研報告范文

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (2) 教學(xué)設(shè)計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險的投資者,投資A項目更合適.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 初中道德與法治七年級上冊生命的思考3作業(yè)設(shè)計

    初中道德與法治七年級上冊生命的思考3作業(yè)設(shè)計

    一、單項選擇題1.C 此題考查生命的特點,AD 選項前面說的都對,但是后面說的都不對。因為: 人生難免風(fēng)險、挫折和坎坷,是逃離不了的,拒絕不了的。生命是獨特的,不能 相互替代,所以 B 也是錯的。C 符合題意正確。 2.①②③都體現(xiàn)對生命的尊重和敬畏,而④表達(dá)的是一種消極避世的人生態(tài)度 ; 因此錯了。所以,正確答案 D。3.最美逆行不是沒有安全意識,相反,他們能做到敬畏生命,堅持生命至上。因 此,②選項錯了,其他選項都符合題意。所以正確答案是 D。4. (1) 主題是:敬畏生命(2) 圖 1,祭奠生命,表達(dá)對逝者的追悼和懷念。這么做是為了悼念生命,體 現(xiàn)對生命的尊重,體會生命之間是息息相關(guān)的。圖 2,生命是崇高的、神圣的,是任何代價都換取不來的。我們對生命要有一種 敬畏的情懷。

  • 初中道德與法治七年級上冊生命的思考作業(yè)設(shè)計

    初中道德與法治七年級上冊生命的思考作業(yè)設(shè)計

    B 等級——較積極參與采訪活動;采訪思路較清晰,記錄較完整;能對自己的生 命觀、價值觀有所反思;能主動展示心得體會。C 等級——基本上能參與采訪活動,遇到困難會想放棄;記錄信息較少,只有少 量與主題有關(guān);對自己生命觀、價值觀理解不深;有一點成果反饋,內(nèi)容過于簡 單??傮w評價結(jié)果: (四) 作業(yè)分析與設(shè)計意圖這是一項基于素質(zhì)教育導(dǎo)向的整體式課時作業(yè)設(shè)計,以培養(yǎng)學(xué)生核心素養(yǎng)為 目標(biāo)。作業(yè)以學(xué)生的“生命故事訪談”為主要情境,以填寫活動記錄的形式呈現(xiàn)。 教師從“參與態(tài)度、思想認(rèn)識”等四個維度對作業(yè)進行評價,以“優(yōu)秀、 良好、 合格”三個等級呈現(xiàn)。本次實踐性作業(yè)是訪談型作業(yè),課前采訪希望通過學(xué)生的 參與,一方面鍛煉學(xué)生的人際交往能力和口頭語言表達(dá)能力,另一方面擴展學(xué)生 的生活閱歷,從他人的精彩故事中獲得啟示,激發(fā)學(xué)生對生命的熱情,樹立正確 的人生觀,同時也為下一框題的“平凡與偉大”提供教學(xué)素材,活出自己生命的 精彩。

  • 初中道德與法治七年級上冊友誼的天空13作業(yè)設(shè)計

    初中道德與法治七年級上冊友誼的天空13作業(yè)設(shè)計

    作業(yè)二(一)、作業(yè)內(nèi)容情境探究、互聯(lián)網(wǎng)將地球縮成一張小小的“網(wǎng)”。在這張“網(wǎng)”里,我們可 以發(fā)布信息、瀏覽新聞、結(jié)交好友等,為我們的人際交往擴展了新通道。情境一 中學(xué)生小強在一個論壇上認(rèn)識了小胡,他們在很多問題上看法一致, 很快成為無話不談的好朋友。經(jīng)常徹夜長談興趣愛好、閑聊家庭狀況、相約打游 戲。 有一天,小胡邀請小強一起去參與網(wǎng)絡(luò)賭博,小強猶豫了。(1)請運用《網(wǎng)上交友新時空》的相關(guān)內(nèi)容,結(jié)合材料,談一談:對于這樣的網(wǎng) 友,小強應(yīng)該怎樣做?情境二 小強拒絕小胡以后,開始找借口疏遠(yuǎn)小胡。小胡察覺后,開始“變臉” 郵寄各種恐嚇信和物品到小強家。小強忍無可忍選擇了報警。(2)小強的網(wǎng)絡(luò)交往經(jīng)歷,給我們中學(xué)生參與網(wǎng)絡(luò)交往哪些建議?

  • 初中道德與法治七年級上冊友誼的天空2作業(yè)設(shè)計

    初中道德與法治七年級上冊友誼的天空2作業(yè)設(shè)計

    選擇題1.打開網(wǎng)頁,你可以看新聞、聽音樂、玩游戲、交朋友、查資料、購 物、學(xué)習(xí)等。這從一個側(cè)面說明了 ( )A.網(wǎng)絡(luò)可以實現(xiàn)我們的一切愿望B.網(wǎng)絡(luò)交往成為我們生活中不可缺少的部分C.網(wǎng)絡(luò)生活很豐富D.網(wǎng)絡(luò)交往是把鋒利的雙刃劍2. 只要上網(wǎng),就等于與世界握手??葱侣劊k商務(wù)、結(jié)交朋友、求醫(yī) 問藥、不用舟車勞頓,不用費事周折。這一切說明 ( )A.網(wǎng)絡(luò)使交流便利,卻使人的思想退化B.網(wǎng)絡(luò)給了很多人可以偷懶的機會C.人們的交往都必須依賴于網(wǎng)絡(luò)D.網(wǎng)絡(luò)生活很豐富,網(wǎng)絡(luò)溝通無極限非常方便、快捷。這說明 ( )A.網(wǎng)絡(luò)交往超越了空間B.網(wǎng)絡(luò)交往提高了人們社會活動的質(zhì)量C.網(wǎng)絡(luò)交往有利無弊D.網(wǎng)絡(luò)交往改變了我們的人生價值4.比爾 ·蓋茨曾說過:“你甚至不知道和你交流的對方是一條坐在電腦 前會敲擊鍵盤的狗。 ”這說明 ( )3.在小明的眾多網(wǎng)友中,有大學(xué)生、參加興趣班的朋友、同學(xué)和老師。學(xué)習(xí)之余,他經(jīng)常上網(wǎng)聊天;遇到問題,他會在網(wǎng)上向同學(xué)和老師請教,

  • 初中道德與法治七年級上冊友誼的天空12作業(yè)設(shè)計

    初中道德與法治七年級上冊友誼的天空12作業(yè)設(shè)計

    (一)課標(biāo)要求在 2022 年課標(biāo)中,要求學(xué)生能夠與他人進行有效溝通。樹立正確的合作與 競爭觀念, 真誠、友善, 具有互助精神。 引導(dǎo)學(xué)生了解積極交往的意義, 樹立主 動交往意識, 積極樹立以同情、關(guān)愛、道義為基礎(chǔ)的友誼。引導(dǎo)學(xué)生在交往中積 極踐行真誠、友善和互助精神, 提高交往能力,學(xué)會處理與自我、他人和集體、 國家和社會等方面關(guān)系, 營造良好和諧的人際關(guān)系。 了解青春期閉鎖心理現(xiàn)象及 危害, 積極與同學(xué)、朋友和成人交往, 體會交往與友誼對生命成長的意義。學(xué)會 用恰當(dāng)?shù)姆绞脚c同齡人交往, 建立同學(xué)間的真誠友誼, 正確認(rèn)識異性同學(xué)之間的 交往與友誼, 把握原則與尺度。知道每個人在人格和法律地位上都是平等的, 做 到平等待人, 不凌弱欺生, 不以家境、身體、智能、性別等方面的差異而自傲或 自卑, 不歧視他人, 富有正義感。合理利用互聯(lián)網(wǎng)等傳播媒介, 初步養(yǎng)成積極的 媒介批評能力,學(xué)會理性利用現(xiàn)代媒介參與社會公共生活。

  • 初中道德與法治七年級上冊友誼的天空3作業(yè)設(shè)計

    初中道德與法治七年級上冊友誼的天空3作業(yè)設(shè)計

    11.材料一:王某在校外結(jié)識了一群哥們,總是他們相約去網(wǎng)吧,徹夜不歸玩游戲,還 聚眾打架。某日,他們相約到路邊向低年級同學(xué)敲詐勒索,被人當(dāng)場抓獲并扭送公安機關(guān)。材料二:小英性格內(nèi)向,不愛與人交流,但她在同桌小紅的影響下,逐漸開始活潑起來, 在班級里結(jié)交了不少朋友。(1) 王某、小英發(fā)生上述變化的原因分別是什么?(2) 結(jié)合材料一和材料二,談?wù)勀銓τ颜x的理解。12.我和小莉是形影不離的好朋友,可是有一次學(xué)校舉辦演講比賽,我們都報了名,但 是小莉被選上了,我卻沒有。從此,我心中有了“心結(jié)” ,不愿再與小莉說話了。后來我在 網(wǎng)上認(rèn)識了小 A,我們之間無話不談、志趣相投。某日小 A 向我借錢,我答應(yīng)了,他很快就 還給我了。于是,我更加堅信他是值得相信的朋友。后來,他再找我借錢,我又一次借給了 他,但沒想到, 自此以后,他仿佛消失了一般,再也沒有聯(lián)系過我。傷心的我,把這事告訴了小莉,小莉建議我在家長的陪同下去報警并陪我渡過那段傷心 的時光,從此我們的友誼更加堅固。(1) 如果你是材料中的“我” ,你落選時朋友小莉卻被選中參賽,你會怎么做?請說 明原因。(2) 材料啟示我們,結(jié)交網(wǎng)友時需要注意什么?

  • 初中道德與法治七年級上冊友誼的天空10作業(yè)設(shè)計

    初中道德與法治七年級上冊友誼的天空10作業(yè)設(shè)計

    2.內(nèi)容內(nèi)在邏輯《友誼的天空》是人教版七年級道德與法治上冊的第二單元。該單元從思想品 德課程的生活性原則出發(fā), 引領(lǐng)學(xué)生在日益擴大的交往中正確認(rèn)識友誼、把握友 誼,為他們自身的健康成長營造良好的人際關(guān)系提供指導(dǎo)。本單元由單元導(dǎo)言和第四課“友誼與成長同行”、第五課“交友的智慧”組 成。第四課、第五課各設(shè)兩框。單元導(dǎo)言用詩意的語言揭示出友誼帶來的豐富感 受以及對學(xué)生成長的意義,旨在引發(fā)學(xué)生的共鳴,激發(fā)學(xué)生探究本單元的愿望。第四課圍繞友誼的作用和探討友誼展開。 第一框 “和朋友在一起”,主要介 紹了友誼是重要的人際關(guān)系和心理需要, 幫助學(xué)生認(rèn)識友誼在成長中的作用; 第 二框 “深深淺淺話友誼”幫助學(xué)生認(rèn)識友誼的特質(zhì), 澄清對友誼可能存在的模糊 認(rèn)識。第五課從行為上指導(dǎo)學(xué)生正確交友。 第一框 “讓友誼之樹常青”引導(dǎo)學(xué)生探 討如何建立友誼和呵護友誼; 第二框 “網(wǎng)上交友新時空”幫助學(xué)生正確認(rèn)識網(wǎng)絡(luò) 交往的特點理清網(wǎng)上交往的利弊。把握好網(wǎng)上人際交往的原則, 擴大交友的范圍, 提升交友的能力。

  • 初中道德與法治七年級上冊友誼的天空14作業(yè)設(shè)計

    初中道德與法治七年級上冊友誼的天空14作業(yè)設(shè)計

    A.因為朋友,我們感受到自己的價值B.因為朋友,我們感受到友誼的力量C.因為朋友,我們獲得了更多的榮譽D.因為朋友,我們會樂于并嘗試學(xué)習(xí)9.朋友之間需要忠誠和信任,但是,這并不意味著朋友之間就應(yīng)該毫無保留。我們關(guān)心和幫助朋友,但不要替朋友作決定。由此可見 ( )A.呵護友誼,需要給對方一些空間B.呵護友誼,需要用心體會對方的需要C.沖突發(fā)生時,要相互協(xié)調(diào)和寬容D.友誼的力量讓我們得到健康的成長10.七年級的樂樂同學(xué)迷上網(wǎng)絡(luò)游戲后,學(xué)習(xí)成績一落千丈。他從此變得孤僻,不愛說話,易發(fā)脾氣。后來,他的同桌亮亮與他交往,和他做朋友,他們經(jīng) 常一起做作業(yè)、討論問題,一起打球。樂樂慢慢遠(yuǎn)離網(wǎng)絡(luò)游戲,學(xué)習(xí)勤奮了,有進步了,性格變得開朗了。這一事例表明 ( )A.友誼幫助我們認(rèn)識和改正自己言行中的缺失,使人進步B.友誼使人遠(yuǎn)離網(wǎng)絡(luò)C.朋友可以改變?nèi)说囊磺蠨.朋友使我們對任何事情都敢去嘗試

上一頁123...848586878889909192939495下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!