Teaching Aims:Knowledge 1. Get the students to learn the useful new words and expressions in this section. Aims:2. Let the students learn about how the UK was formed and the four groups of invaders.1. Develop students’ reading ability and let them learn different Ability reading skills. Aims:2. Enable students to learn to talk about the United Kingdom and the Union Jack Emotional 1. Let students know more about the UK2. Develop students’ sense of cooperative learning Aims:Teaching Important Points:1. Let the students learn about the countries of the United Kingdom and the Union Jack2. Get the students to read the passage and know about how the UK was formed and the four groups of invaders.3. Have the students learn different reading skills.Teaching Difficult Ponts:1. Develop students’ reading ability.2. Enable students to talk about the United Kingdom and the Union Jack.3. Let students learn how the UK was formed geographically and historically.Teaching Methods:Showing pictures, asking, exercising, listening, reading etc.Teaching Aids:A computer,a projector and a blackboard.Teaching Procedures: 1) Show a map of the world, ask students the following questions:Where is the UK?What’s the full name of the UK?2) Ask the students work in pairs to do the quiz on Page 9.Do you want to test how many things you know about the United Kingdom? Let’s have a small test.Using the map on P9, students answer the following questions:?How many countries does the UK consist of? What are they??England is divided into three main areas. Do you know what they are? 1) Scanning (10Minutes )Let the students hold the questions asked in pre-reading and read the passagequickly and then let them do the following exercise.Join lines to the right answer.
本節(jié)課是人教社物理必修1第三章第三節(jié)的內(nèi)容,編排在彈力之后。該節(jié)知識既是力學(xué)的基礎(chǔ),也是組成整個高中物理知識的一塊“基石”,所以這節(jié)內(nèi)容的教學(xué)如何引領(lǐng)學(xué)生自主積極地探究摩擦力產(chǎn)生的條件和影響因素,體驗?zāi)Σ亮μ攸c規(guī)律的發(fā)生過程是本節(jié)課的重點,應(yīng)高度重視本節(jié)教學(xué)過程;由于摩擦力問題的復(fù)雜性,且在具體問題中又表現(xiàn)出“動中有靜,靜中有動”,尤其靜摩擦在許多情形下似乎又是“若有若無,方向不定”,因此,對于初學(xué)者也是有一定難度的。也正是由于教材內(nèi)容的上述特點,本節(jié)課又易于激起學(xué)生的求知欲,易于培養(yǎng)學(xué)生的辯證觀點,易于錘煉學(xué)生的物理素質(zhì)。要充分用好該節(jié)教材內(nèi)容,深入挖掘知識間的有機聯(lián)系,對學(xué)生開展針對性的思維訓(xùn)練,進而提高學(xué)生應(yīng)用物理知識解決實際問題的能力和創(chuàng)新思維能力。高中物理《課標》對該知識點的要求是,“通過實驗認識滑動摩擦、靜摩擦的規(guī)律,能用動摩擦因數(shù)計算摩擦力”。其中,對靜摩擦力規(guī)律的認識應(yīng)該包括最大靜摩擦力。
(一)、復(fù)習(xí)提問1、請說出功的計算公式及功的單位2、我們用哪個物理量表示物體運動的快慢?(二)、創(chuàng)設(shè)情景,引入新課1、播放多媒體素材,用起重機和一個工人搬運幾百塊磚比較哪一種方法好?圖中的情景說明了什么問題?(教師通過所設(shè)計的情景,將學(xué)生引入怎樣比較做功快慢,讓學(xué)生發(fā)表自己的看法,初步知道物體做功是有快慢之分的。)(三)、進行新課1、比較做功快慢的方法播放多媒體素材并提出問題:怎樣比較兩個人誰做功快誰做功慢?教師啟發(fā):以前學(xué)習(xí)過要比較兩物體運動的快慢,可以先確定路程再比較時間,也可以先確定時間再比較路程。在路程和時間都不同時,通過計算速度比較兩物體運動的快慢。同理,要比較物體做功的快慢可采用什么方法?
探究一:高中階段功的含義是什么?投影:初中九年級《物理》105頁學(xué)生思考:①圖中物體的勢能、動能分別如何變化?②物體能量的變化和做功是否存在關(guān)系?學(xué)生:分組討論,得出結(jié)論:如果物體的能量發(fā)生變化時,說明有力對物體做了功。教師:進行點評和小結(jié)(設(shè)計意圖:對初中知識深化理論認識,并為以后功能關(guān)系的教學(xué)作準備)探究二:力對物體做功的兩個要素是什么?情景再現(xiàn):找體重相對懸殊的兩位同學(xué),①A同學(xué)試圖抱起B(yǎng)同學(xué),但沒成功。②B同學(xué)抱起A同學(xué)在教室內(nèi)勻速走動。學(xué)生思考:在①中,A是否對B做功?在②中,B是否對A做功?學(xué)生:分析得出做功的兩要素:物體受到力的作用,并且在力的方向上發(fā)生位移.教師:讓學(xué)生分別例舉生活中力對物體做功和不做功的例子,(設(shè)計意圖:讓學(xué)生親身參與課堂實驗,烘托課堂氣氛,相互協(xié)作增進同學(xué)情誼)探究三:如果物體的位移不再力的方向上,那么力是否還對物體做功?
通過寫文章梗概,培養(yǎng)學(xué)生綜合運用語言的能力,學(xué)習(xí)用恰當?shù)挠⒄Z描述科學(xué)家的故事。這是本課的教學(xué)難點。教師可以使用完形填空的方式來幫助學(xué)生整理語篇,從而來降低難度。本課的教學(xué)重點的突破方法是:在閱讀前,讓學(xué)生初步了解得出科學(xué)觀點所需要的基本程序,從而輕松而自然地導(dǎo)入文章的閱讀;在閱讀過程中,由易到難設(shè)計快速閱讀和精讀的問題,層層推進各種閱讀活動,讓學(xué)生對閱讀內(nèi)容從整體感知到細節(jié)理解,最后深層讀懂整篇文章,同時加強閱讀策略的指導(dǎo),讓每個學(xué)生都主動參與課堂教學(xué)活動,最終達到提高閱讀能力的目的。Step 4 Post-readingGroup Activities四人小組共同合作,在老師的適當指導(dǎo)下,就以下2個問題展開討論,讓學(xué)生就所知、所學(xué)、所感和所想融入話題,然后抽若干同學(xué)代表作小組發(fā)言。1. What do you think about John Snow, and what should we learn from him?2. Cholera was 19th century disease, which two diseases are similar to cholera today? Why?
Good afternoon, everyone. It’s my great pleasure to be here sharing my lesson with you. The content of my lesson is Senior English for China Book5 Unit 3 Life in the Future. I’ll be ready to begin this lesson from six parts: Analysis of the teaching material, Analysis of the students, Teaching aims and important and difficult points, Teaching methods and aids, Teaching procedures, and Blackboard design. First, let me talk about the teaching material.Part 1 Analysis of the Teaching Material:This unit is about what human beings’ life will be like in about one thousand years. By studying of this unit, we’ll Enable the students to know the changes in humans’ life and some new inventions bringing about the change and develop the interest in science. This lesson plays an important part in the English teaching in this unit. This is an important lesson in Book Five. From this lesson, it starts asking the Ss to grasp contents of each passage. Therefore, this lesson is in the important position of the teaching material. If the Ss can learn it well, it will be helpful to make the Ss learn the rest of this unit.Part 2 Analysis of the SsAs Senior2 Ss, they are at different levels of English fluency, some of them have lost interest in English. So during the lesson, I arrange a variety of activities to let all of them join in to attract their interest and let them be confident and taste the joy of success.
分析過焦作市的地理概況和產(chǎn)業(yè)優(yōu)勢后,就需要針對由于資源枯竭所帶來的問題提出合理化的建議。既然是談經(jīng)濟轉(zhuǎn)型,就應(yīng)該將話題的范圍明確在這一領(lǐng)域內(nèi)。通過材料3的相關(guān)內(nèi)容,我們了解到焦作市需要在產(chǎn)業(yè)結(jié)構(gòu)調(diào)整、培育新的優(yōu)勢產(chǎn)業(yè)、增強綜合競爭力等三個整改方針上下功夫。因而引導(dǎo)學(xué)生針對優(yōu)勢與不足提出建議,以三個整改方針為基準,衡量建議的可行性是鍛煉學(xué)生解決此類問題的有效途徑。在此我將教會學(xué)生的是解決問題方法而非案例的內(nèi)容,正所謂“授之以魚,不如授之以漁”。接下來針對學(xué)生的建議和教材資料分析所羅列的10點整改思路,由學(xué)生自由發(fā)言提出看法,通過教師的指導(dǎo)和學(xué)生的討論,進而確定經(jīng)濟轉(zhuǎn)型建議的具體方案。最后注意將建議與產(chǎn)業(yè)優(yōu)勢相對照,看建議是否都是圍繞著產(chǎn)業(yè)優(yōu)勢而提出的,這樣做會加深學(xué)生的印象,通過建議和優(yōu)勢的對應(yīng)關(guān)系,將不難找出此類問題的解題思路。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
培養(yǎng)學(xué)生合作交流意識和探究問題的能力,這一部分知識層層遞進,符合學(xué)生由特殊到一般、由簡單到復(fù)雜的認知規(guī)律。4、互動探究(1)極限思想的滲透讓學(xué)生閱讀“思考與討論”小版塊.培養(yǎng)學(xué)生的自學(xué)和閱讀能力提出下列問題,進行分組討論:a、用課本上的方法估算位移,其結(jié)果比實際位移大還是小?為什么?b、為了提高估算的精確度,時間間隔小些好還是大些好?為什么?針對學(xué)生回答的多種可能性加以評價和進一步指導(dǎo)。讓學(xué)生從討論的結(jié)果中歸納得出:△t越小,對位移的估算就越精確。滲透極限的思想。通過小組內(nèi)分工合作,討論交流,培養(yǎng)學(xué)生交流合作的精神,以及搜集信息、處理信息的能力;通過小組間對比總結(jié),使學(xué)生學(xué)會在對比中發(fā)現(xiàn)問題,在解決問題過程中提高個人能力;
設(shè)計意圖:幾道例題及練習(xí)題,其中例1小車由靜止啟動開始行駛,以加速度 做勻加速運動,求2s后的速度大???進而變式到:小車遇到紅燈剎車……,充分體現(xiàn)了“從生活到物理,從物理到社會”的物理教學(xué)理念;例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標提出的讓不同的學(xué)生在物理上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。(6) 小結(jié)歸納,拓展深化我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:① 通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;② 通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;③ 通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)物理的方法?
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
四、說教學(xué)過程:1、導(dǎo)入新課:以視頻形式導(dǎo)入新課,說明環(huán)境問題產(chǎn)生原因,引出人地關(guān)系的重要性2、新課講授:學(xué)習(xí)主題一:過去——人地關(guān)系的歷史回顧以動畫形式展現(xiàn)人地關(guān)系思想的發(fā)展,激發(fā)學(xué)生學(xué)習(xí)本專題的興趣,歸納人與自然關(guān)系的演變過程。學(xué)習(xí)主題二:現(xiàn)狀——直面環(huán)境問題以人類與環(huán)境關(guān)系模式圖說明環(huán)境問題產(chǎn)生的原因,人地關(guān)系實質(zhì);以因果聯(lián)系框圖培養(yǎng)學(xué)生判讀方法,了解人口、資源與環(huán)境三者之間的關(guān)系;通過閱讀課文,了解環(huán)境問題的類型及其空間差異的表現(xiàn);以圖表了解不同國家和地區(qū)環(huán)境問題在空間軸上的表現(xiàn);以《京都議定書》為引子說明保護環(huán)境是全人類的共同使命學(xué)習(xí)主題三:未來——可持續(xù)發(fā)展展示“可持續(xù)發(fā)展示意圖”理解可持續(xù)發(fā)展內(nèi)涵、原則