提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中地理必修3第三章第一節(jié)能源資源的開(kāi)發(fā)教案

  • 人教版新課標(biāo)高中物理必修2探究彈性勢(shì)能的表達(dá)式說(shuō)課稿4篇

    人教版新課標(biāo)高中物理必修2探究彈性勢(shì)能的表達(dá)式說(shuō)課稿4篇

    設(shè)疑自探:一個(gè)壓縮或拉伸的彈簧就是一個(gè)“儲(chǔ)能器”,怎樣衡量形變彈簧蘊(yùn)含能量的多少呢?彈簧的彈性勢(shì)能的表達(dá)式可能與那幾個(gè)物理量有關(guān)?類比:物體的重力勢(shì)能與物體所受的重力和高度有關(guān)。那么彈簧的彈性勢(shì)能可能與所受彈力的大小和在彈力方向上的位置變化有關(guān),而由F=kl知彈簧所受彈力等于彈簧的勁度系數(shù)與形變量的乘積。預(yù)測(cè):彈簧的彈性勢(shì)能與彈簧的勁度系數(shù)和形變量有關(guān)。學(xué)生討論如何設(shè)計(jì)實(shí)驗(yàn): ①、用同一根彈簧在幾次被壓縮量不同時(shí)釋放(勁度系數(shù)相同,改變形變量),觀察小車被彈開(kāi)的情況。②、分別用兩根彈簧在被壓縮量相同時(shí)釋放(形變量相同,勁度系數(shù)不同),觀察小車被彈開(kāi)的情況。交流探究結(jié)果:彈性勢(shì)能隨彈簧形變量增大而增大。隨彈簧的勁度系數(shù)的增大而增大。

  • 人教版高中歷史必修3古代中國(guó)的發(fā)明和發(fā)現(xiàn)說(shuō)課稿

    人教版高中歷史必修3古代中國(guó)的發(fā)明和發(fā)現(xiàn)說(shuō)課稿

    一、說(shuō)教材(一)、教材內(nèi)容《古代中國(guó)的發(fā)明和發(fā)現(xiàn)》是人教版高中歷史必修三第三單元第一課內(nèi)容,本課教材主要從五個(gè)方面的典型事例向?qū)W生介紹了古代中國(guó)幾千年的科技成就。本課一方面展示了古代中國(guó)人民的勤勞智慧以及對(duì)世界文明發(fā)展作出的巨大貢獻(xiàn),另一方面也提出了一個(gè)重大問(wèn)題引起學(xué)生的思考,即造成中國(guó)科技在近代落后的原因是什么。此外、本課在教材中具有承上啟下的地位和作用,前承中國(guó)傳統(tǒng)文化主流思想,后啟現(xiàn)代中國(guó)科學(xué)技術(shù)的發(fā)展。根據(jù)課標(biāo)要求和教材內(nèi)容,我將本課的三維目標(biāo)確定如下:(三)教學(xué)目標(biāo)(1)知識(shí)與能力:掌握中國(guó)古代科技進(jìn)步的基礎(chǔ)知識(shí),特別是四大發(fā)明。認(rèn)識(shí)古代中國(guó)四大發(fā)明對(duì)世界文明發(fā)展的貢獻(xiàn),以及取得重大成就的原因。⑵過(guò)程與方法:通過(guò)指導(dǎo)學(xué)生課前閱讀課本,在課堂上進(jìn)行問(wèn)題探究、實(shí)驗(yàn)體驗(yàn)以及歷史比較,學(xué)會(huì)總結(jié)歸納。

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中歷史必修3現(xiàn)代中國(guó)教育的發(fā)展說(shuō)課稿

    人教版高中歷史必修3現(xiàn)代中國(guó)教育的發(fā)展說(shuō)課稿

    一、教材分析下面我來(lái)談一談對(duì)教材的認(rèn)識(shí):主要從教材的地位和作用、以及在此基礎(chǔ)上確立的教學(xué)目標(biāo)、教學(xué)重難點(diǎn)這三個(gè)方面來(lái)談。首先,來(lái)談教材的地位和作用:本課教材內(nèi)容主要從三個(gè)方面向?qū)W生介紹了現(xiàn)代中國(guó)教育的發(fā)展?fàn)顩r和趨勢(shì):人民教育的奠基、動(dòng)亂中的教育和教育的復(fù)興,全面講述了新中國(guó)教育的三個(gè)階段。本課是文化史中中國(guó)史部分的最后一課, 也是必修三冊(cè)書(shū)中唯一涉及教育的一課。而教育是思想文化史中的重要組成部分,江澤民同志在談到教育的時(shí)候曾經(jīng)說(shuō)過(guò),“百年大計(jì),教育為本。教育為本,在于育人”。教育是關(guān)系國(guó)計(jì)民生的大事。學(xué)生通過(guò)學(xué)習(xí)新中國(guó)教育發(fā)展的史實(shí),理解“科教興國(guó)”、“國(guó)運(yùn)興衰,系于教育”的深刻含義。最終由此激發(fā)學(xué)生樹(shù)立“知識(shí)改變命運(yùn)、讀書(shū)成就人生”的信念,樹(shù)立勤奮學(xué)習(xí)、成人成才、報(bào)效祖國(guó)、服務(wù)社會(huì)的崇高理想。故本課的教學(xué)有極大的現(xiàn)實(shí)意義。談完了教材的地位和作用,我再分析一下教學(xué)目標(biāo):

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 高中歷史人教版必修一《第2課秦朝中央集權(quán)制度的形成》說(shuō)課稿

    高中歷史人教版必修一《第2課秦朝中央集權(quán)制度的形成》說(shuō)課稿

    【課件展示】《秦朝中央集權(quán)制度的建立》《教材簡(jiǎn)析》《教學(xué)目標(biāo)》《教法簡(jiǎn)介》《教學(xué)過(guò)程設(shè)計(jì)及特色簡(jiǎn)述》【師】本節(jié)內(nèi)容以秦代政治體制和官僚系統(tǒng)的建立為核心內(nèi)容,主要包括秦朝中央集權(quán)制的建立的背景、建立過(guò)程及影響。本節(jié)內(nèi)容在整個(gè)單元中起到承前啟后的作用,在整個(gè)模塊中也有相當(dāng)重要的地位。讓學(xué)生了解中國(guó)古代中央集權(quán)政治體制的初建對(duì)于理解我國(guó)古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結(jié)合,通過(guò)巧妙設(shè)計(jì)問(wèn)題情境,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,使學(xué)生主動(dòng)學(xué)習(xí),探究思考。教師引導(dǎo)和組織學(xué)生采取小組討論、情景體驗(yàn)等方式,達(dá)到教學(xué)目標(biāo)。 本節(jié)內(nèi)容分三個(gè)部分,下面首先看秦朝中央集權(quán)制度建立的前提即秦的統(tǒng)一

  • 人教版新課標(biāo)高中物理必修2生活中的圓周運(yùn)動(dòng)說(shuō)課稿3篇

    人教版新課標(biāo)高中物理必修2生活中的圓周運(yùn)動(dòng)說(shuō)課稿3篇

    (一)地位《生活中的圓周運(yùn)動(dòng)》這節(jié)課是新課標(biāo)人教版《物理》必修第二冊(cè)第5章《曲線運(yùn)動(dòng)》一章中的第7節(jié),也是該章最后一節(jié)。本節(jié)課是在學(xué)生學(xué)習(xí)了圓周運(yùn)動(dòng)、向心加速度、向心力以后的一節(jié)應(yīng)用課,通過(guò)研究圓周運(yùn)動(dòng)規(guī)律在生活中的具體應(yīng)用,使學(xué)生深入理解圓周運(yùn)動(dòng)規(guī)律,并且結(jié)合日常生活中的某些生活體驗(yàn),加深物理知識(shí)在頭腦中的印象。(二)教材處理教材中的“火車轉(zhuǎn)彎”與“汽車過(guò)拱橋”根據(jù)學(xué)生接受的難易程度,順序作了對(duì)調(diào),并把最后一部分“離心運(yùn)動(dòng)”放到下一節(jié)課處理。(三)教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo)(1)進(jìn)一步加深對(duì)向心力的認(rèn)識(shí),會(huì)在實(shí)際問(wèn)題中分析向心力的來(lái)源。(2)培養(yǎng)學(xué)生獨(dú)立觀察、分析問(wèn)題、解決問(wèn)題的能力,提高學(xué)生概括總結(jié)知識(shí)的能力。(3)了解航天器中的失重現(xiàn)象。2.過(guò)程與方法目標(biāo)(1)學(xué)會(huì)分析圓周運(yùn)動(dòng)方法,會(huì)分析拱形橋、彎道等實(shí)際的例子,培養(yǎng)理論聯(lián)系實(shí)際的能力。

  • 人教版高中政治必修4世界是永恒發(fā)展的說(shuō)課稿(一)

    人教版高中政治必修4世界是永恒發(fā)展的說(shuō)課稿(一)

    5.課堂練習(xí),夯實(shí)基礎(chǔ)。得出原理方法論之后,給學(xué)生一分鐘時(shí)間記憶,然后一名或幾名學(xué)生上講臺(tái)默寫(xiě),其他同學(xué)相互提問(wèn)。針對(duì)這一基本概念,設(shè)置一道選擇題。6、播放黃宏、宋丹丹小品《回家》片段,引發(fā)學(xué)生的興趣,接著教師展示幾幅關(guān)于手機(jī)的圖片,然后讓學(xué)生結(jié)合圖片,進(jìn)行討論交流解決“合作探究二”,然后進(jìn)行搶答(可以引發(fā)學(xué)生的競(jìng)爭(zhēng),從而調(diào)動(dòng)課堂氣氛)。教師在學(xué)生回答基礎(chǔ)上,引導(dǎo)學(xué)生得出發(fā)展的實(shí)質(zhì)這一結(jié)論,接著教師展示“如何判斷一個(gè)事物是新事物還是舊事物的標(biāo)準(zhǔn)”,結(jié)合這一標(biāo)準(zhǔn),讓學(xué)生判斷“電腦科技算命是不是新事物”,學(xué)生很容易就可以得出結(jié)論。7.教師簡(jiǎn)單總結(jié)剛剛學(xué)過(guò)的內(nèi)容,引出“運(yùn)動(dòng)、變化是不是發(fā)展?”然后讓學(xué)生討論交流“合作探究三”。然后進(jìn)行搶答,教師在學(xué)生回答基礎(chǔ)上,稍加點(diǎn)評(píng),給予積極地評(píng)價(jià),然后展示答案。8.教師引導(dǎo)學(xué)生得出本節(jié)課的第二個(gè)原理與方法論,并讓學(xué)生當(dāng)堂記憶,可以簡(jiǎn)單提問(wèn)。然后做課堂達(dá)標(biāo)題,在學(xué)生展示答案后,教師簡(jiǎn)單點(diǎn)撥即可。

  • 人教版高中政治必修4社會(huì)發(fā)展的規(guī)律說(shuō)課稿(一)

    人教版高中政治必修4社會(huì)發(fā)展的規(guī)律說(shuō)課稿(一)

    學(xué)生回答:推動(dòng)社會(huì)發(fā)展的矛盾是:生產(chǎn)力和生產(chǎn)關(guān)系的矛盾,經(jīng)濟(jì)基礎(chǔ)和上層建筑的矛盾。問(wèn)題:你知道人類社會(huì)存在和發(fā)展的基礎(chǔ)嗎?學(xué)生回答,步步深入。社會(huì)發(fā)展的規(guī)律是生產(chǎn)關(guān)系一定要適合生產(chǎn)力發(fā)展的規(guī)律,上層建筑一定要適合經(jīng)濟(jì)基礎(chǔ)狀況的規(guī)律。你是如何理解這兩個(gè)規(guī)律的?請(qǐng)舉例說(shuō)明。那么你是如何理解這一規(guī)律的,請(qǐng)舉例說(shuō)明學(xué)生閱讀教材第二目,并舉例說(shuō)明。培養(yǎng)學(xué)生自我學(xué)習(xí)能力。教師歸納:總結(jié)生產(chǎn)力和生產(chǎn)關(guān)系、經(jīng)濟(jì)基礎(chǔ)和上層建筑的辯證關(guān)系原理。過(guò)渡:我們掌握了社會(huì)發(fā)展的規(guī)律,那么同學(xué)們來(lái)說(shuō)一下,社會(huì)發(fā)展呈什么趨勢(shì)?這一趨勢(shì)怎么實(shí)現(xiàn)的?社會(huì)矛盾的解決方式有幾種,為什么會(huì)有這么的區(qū)別,我們國(guó)家的矛盾解決靠什么方式來(lái)完成?學(xué)生閱讀教材第三目,學(xué)生分組合作探究,交流發(fā)言。設(shè)計(jì)意圖:提升推導(dǎo)能力,引導(dǎo)深化認(rèn)識(shí)。教師歸納總結(jié):社會(huì)歷史發(fā)展的總趨勢(shì)是前進(jìn)的、上升的,發(fā)展的過(guò)程是曲折的。

  • 人教版高中歷史必修3物理學(xué)的重大進(jìn)展說(shuō)課稿2篇

    人教版高中歷史必修3物理學(xué)的重大進(jìn)展說(shuō)課稿2篇

    二、相對(duì)論的創(chuàng)立【課件】展示下列材料艾伯特·愛(ài)因斯坦(1879——1955),1879年3月14日誕生在德國(guó)烏爾姆的一個(gè)猶太人家中。1894年舉家遷居意大利米蘭。1900年畢業(yè)于瑞士蘇黎世工業(yè)大學(xué)。愛(ài)因斯坦被認(rèn)為是最富于創(chuàng)造力的科學(xué)家,他不但創(chuàng)立了相對(duì)論,還提出了光量子的概念,得出了光電效應(yīng)的基本定律,并揭示了光的波粒二重性本質(zhì),為量子力學(xué)的建立奠定基礎(chǔ)。為此榮獲1921年度的諾貝爾物理學(xué)獎(jiǎng)。同時(shí),他還證明了熱的分子運(yùn)動(dòng)論,提出了測(cè)定分子大小的新方法。【問(wèn)題】19世紀(jì)末20世紀(jì)初愛(ài)因斯坦對(duì)物理學(xué)的貢獻(xiàn)是什么?意義是什么?為什么會(huì)出現(xiàn)?1、背景:經(jīng)典物理學(xué)的危機(jī)。19世紀(jì)末三大發(fā)現(xiàn):x射線、放射性和電子,經(jīng)典力學(xué)無(wú)法解釋研究中的新問(wèn)題,如:黑體輻射、光電效應(yīng)等。2、相對(duì)論的提出及主要內(nèi)容:(1)“狹義相對(duì)論”和光速不變?cè)恚?905年提出。

  • 人教版新課標(biāo)高中物理必修1力的合成說(shuō)課稿3篇

    人教版新課標(biāo)高中物理必修1力的合成說(shuō)課稿3篇

    ① 實(shí)驗(yàn)設(shè)計(jì)將學(xué)生分組,利用桌上的器材進(jìn)行探究(幻燈片展示)這個(gè)實(shí)驗(yàn)難度較大,為了降低難度,為實(shí)驗(yàn)探究鋪下第二臺(tái)階,要求學(xué)生先分小組討論以下問(wèn)題(幻燈片展示)有些學(xué)生可能不知如何下手,我會(huì)要求學(xué)生先閱讀課本中的實(shí)驗(yàn)描述從中得到一點(diǎn)提示,再讓一兩個(gè)小組同學(xué)回答,這樣既體現(xiàn)了學(xué)生學(xué)習(xí)的主體性又可提高學(xué)生自主思考和語(yǔ)言表達(dá)能力,之后我再進(jìn)行補(bǔ)充完善(幻燈片展示答案),并用幻燈片把實(shí)驗(yàn)步驟展示出來(lái),在學(xué)生實(shí)驗(yàn)過(guò)程一直保留,使學(xué)生能朝正確的方向進(jìn)行猜想和操作,為實(shí)驗(yàn)探究鋪下第三個(gè)臺(tái)階。② 實(shí)施探究在學(xué)生分組進(jìn)行探究過(guò)程,教師巡視解惑,隨時(shí)觀察學(xué)生情況,解答學(xué)生提出的問(wèn)題,還可用自言自語(yǔ)方式提示應(yīng)注意的一些問(wèn)題,如儀器的正確使用,操作的規(guī)范等,幫助學(xué)生盡量在規(guī)定時(shí)間內(nèi)順利完成實(shí)驗(yàn)。

上一頁(yè)123...313233343536373839404142下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專注素材下載!