提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中政治必修3世界文化的多樣性教案

  • 人教版新課標(biāo)高中物理必修2功說(shuō)課稿2篇

    人教版新課標(biāo)高中物理必修2功說(shuō)課稿2篇

    探究一:高中階段功的含義是什么?投影:初中九年級(jí)《物理》105頁(yè)學(xué)生思考:①圖中物體的勢(shì)能、動(dòng)能分別如何變化?②物體能量的變化和做功是否存在關(guān)系?學(xué)生:分組討論,得出結(jié)論:如果物體的能量發(fā)生變化時(shí),說(shuō)明有力對(duì)物體做了功。教師:進(jìn)行點(diǎn)評(píng)和小結(jié)(設(shè)計(jì)意圖:對(duì)初中知識(shí)深化理論認(rèn)識(shí),并為以后功能關(guān)系的教學(xué)作準(zhǔn)備)探究二:力對(duì)物體做功的兩個(gè)要素是什么?情景再現(xiàn):找體重相對(duì)懸殊的兩位同學(xué),①A同學(xué)試圖抱起B(yǎng)同學(xué),但沒(méi)成功。②B同學(xué)抱起A同學(xué)在教室內(nèi)勻速走動(dòng)。學(xué)生思考:在①中,A是否對(duì)B做功?在②中,B是否對(duì)A做功?學(xué)生:分析得出做功的兩要素:物體受到力的作用,并且在力的方向上發(fā)生位移.教師:讓學(xué)生分別例舉生活中力對(duì)物體做功和不做功的例子,(設(shè)計(jì)意圖:讓學(xué)生親身參與課堂實(shí)驗(yàn),烘托課堂氣氛,相互協(xié)作增進(jìn)同學(xué)情誼)探究三:如果物體的位移不再力的方向上,那么力是否還對(duì)物體做功?

  • 人教版高中英語(yǔ)必修4Body Language說(shuō)課稿4篇

    人教版高中英語(yǔ)必修4Body Language說(shuō)課稿4篇

    Textbook: Senior English for China (Book 4), by Liu Daoyi Time Allotment: 1 period (40 minutes)Date: March 20, 2014Teaching aids: blackboard, Multi-media, Power Point, chalk I. Text Analysis (教材分析)This unit is about body language, and the text selected in the reading part demonstrates the difference and similarity of body language in many parts of the world. Through learning this passage, students are required to raise their awareness of using body language in different parts of the world. As body language is closely related to our daily life, it is easy to arouse students’ interest in learning this text. Reading skills and speaking training are designed around the text.II. Teaching Objectives (教學(xué)目標(biāo))By the end of the lesson, students will be able to:1. Language Skill Objective(語(yǔ)言技能目標(biāo)): develop reading ability (skimming and scanning)as well as speaking ability.2. Cultural Knowledge Objective(文化知識(shí)目標(biāo)): know about the cultural differences of using body language.3. Affective Objective(情感目標(biāo)): increase students’ awareness of using body language correctly in different cultures. III.Teaching Focuses and Difficulties(教學(xué)重點(diǎn)和難點(diǎn))1. Teaching Focuses(教學(xué)重點(diǎn)): the difference and similarity of body language in many parts of the world.2. Teaching Difficulties(教學(xué)難點(diǎn)): develop students’ reading abilities of skimming and scanning and ask the students to show their opinions with fluent English.

  • 高中語(yǔ)文人教版必修二《歸園田居》說(shuō)課稿

    高中語(yǔ)文人教版必修二《歸園田居》說(shuō)課稿

    一、說(shuō)教材本節(jié)課選自于人教版語(yǔ)文必修二第二單元詩(shī)三首中的一首詩(shī)歌,它是陶淵明歸隱后的作品。寫(xiě)的是田園之樂(lè),實(shí)際表明的是作者不愿與世俗同流合污的心聲,甘愿守著自己的拙志回歸田園。學(xué)習(xí)該詩(shī),有助于學(xué)生了解山水田園詩(shī)的特點(diǎn),感受者作者不同流俗的高尚情操,同時(shí)可以培養(yǎng)學(xué)生初步的鑒賞古典詩(shī)歌的能力。

  • 高中語(yǔ)文人教版必修三《動(dòng)物游戲之謎》說(shuō)課稿

    高中語(yǔ)文人教版必修三《動(dòng)物游戲之謎》說(shuō)課稿

    科學(xué)是人類認(rèn)識(shí)世界的重要工具,閱讀科普說(shuō)明文不僅可以啟迪心智,了解更多知識(shí)。而且更夠激發(fā)學(xué)生對(duì)科學(xué)的興趣。學(xué)習(xí)這些文章要注重學(xué)生科學(xué)精神的培養(yǎng),關(guān)注科學(xué)探索的過(guò)程,感受科學(xué)家在科學(xué)探索中表現(xiàn)的人格魅力。我們知道一些科學(xué)家就是因?yàn)殚喿x了相關(guān)的科普文章才對(duì)某一學(xué)科產(chǎn)生興趣,從而走上成功之路的。我們?cè)谥v解的時(shí)候可以跟學(xué)生列舉一些例子,讓學(xué)生認(rèn)識(shí)到一篇好的科普文章的重大意義。

  • 人教版高中歷史必修2戰(zhàn)后資本主義世界經(jīng)濟(jì)體系的形成說(shuō)課稿3篇

    人教版高中歷史必修2戰(zhàn)后資本主義世界經(jīng)濟(jì)體系的形成說(shuō)課稿3篇

    1、《戰(zhàn)后資本主義世界經(jīng)濟(jì)體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學(xué)時(shí)為1課時(shí)?!稓v史必修Ⅱ》一書(shū)用古今貫通、中外關(guān)聯(lián)的八個(gè)專題來(lái)著重反映人類社會(huì)經(jīng)濟(jì)和社會(huì)生活領(lǐng)域發(fā)展進(jìn)程中的重要史實(shí)。從第一單元勾勒“古代中國(guó)經(jīng)濟(jì)的基本結(jié)構(gòu)與特點(diǎn)”再到第八單元“世界經(jīng)濟(jì)的全球化趨勢(shì)”,以歷史唯物主義觀點(diǎn)清晰闡明經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史必然趨勢(shì)。第八單元的標(biāo)題是《世界經(jīng)濟(jì)的全球化趨勢(shì)》,作為最后一單元,從內(nèi)容上講,有強(qiáng)烈的時(shí)代感和現(xiàn)實(shí)意義,是全書(shū)內(nèi)容的總結(jié)與升華展望。提起“全球化”這個(gè)十年前才首次出現(xiàn)在美國(guó)《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現(xiàn)象,全球化有其自身內(nèi)部嚴(yán)密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內(nèi)容的著力點(diǎn)。

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 人教版高中地理必修2第六章第一節(jié)人地關(guān)系思想的演變說(shuō)課稿

    人教版高中地理必修2第六章第一節(jié)人地關(guān)系思想的演變說(shuō)課稿

    四、說(shuō)教學(xué)過(guò)程:1、導(dǎo)入新課:以視頻形式導(dǎo)入新課,說(shuō)明環(huán)境問(wèn)題產(chǎn)生原因,引出人地關(guān)系的重要性2、新課講授:學(xué)習(xí)主題一:過(guò)去——人地關(guān)系的歷史回顧以動(dòng)畫(huà)形式展現(xiàn)人地關(guān)系思想的發(fā)展,激發(fā)學(xué)生學(xué)習(xí)本專題的興趣,歸納人與自然關(guān)系的演變過(guò)程。學(xué)習(xí)主題二:現(xiàn)狀——直面環(huán)境問(wèn)題以人類與環(huán)境關(guān)系模式圖說(shuō)明環(huán)境問(wèn)題產(chǎn)生的原因,人地關(guān)系實(shí)質(zhì);以因果聯(lián)系框圖培養(yǎng)學(xué)生判讀方法,了解人口、資源與環(huán)境三者之間的關(guān)系;通過(guò)閱讀課文,了解環(huán)境問(wèn)題的類型及其空間差異的表現(xiàn);以圖表了解不同國(guó)家和地區(qū)環(huán)境問(wèn)題在空間軸上的表現(xiàn);以《京都議定書(shū)》為引子說(shuō)明保護(hù)環(huán)境是全人類的共同使命學(xué)習(xí)主題三:未來(lái)——可持續(xù)發(fā)展展示“可持續(xù)發(fā)展示意圖”理解可持續(xù)發(fā)展內(nèi)涵、原則

  • 人教版高中地理必修2第一章第三節(jié)人口的合理容量說(shuō)課稿

    人教版高中地理必修2第一章第三節(jié)人口的合理容量說(shuō)課稿

    【教學(xué)目標(biāo)】知識(shí)與技能:理解環(huán)境承載力與環(huán)境人口容量的含義、兩者的關(guān)系以及環(huán)境人口容量的影響因素;理解人口合理容量的含義,影響因素并掌握保持人口合理容量的做法;結(jié)合中國(guó)國(guó)情提出適合中國(guó)保持合理人口容量的措施過(guò)程與方法:通過(guò)問(wèn)題探究及案例分析理解環(huán)境承載力與環(huán)境人口容量的關(guān)系及影響因素;通過(guò)問(wèn)題探討掌握保持人口合理容量的措施。情感態(tài)度與價(jià)值觀:樹(shù)立并強(qiáng)化學(xué)生的可持續(xù)發(fā)展觀念,科學(xué)發(fā)展觀。激發(fā)學(xué)生愛(ài)國(guó)情感更多地關(guān)注國(guó)家國(guó)情,樹(shù)立主人翁意識(shí)保護(hù)地球強(qiáng)大祖國(guó)?!窘虒W(xué)重點(diǎn)】環(huán)境人口容量的內(nèi)涵以及影響因素人口合理容量的影響因素以及措施【教學(xué)難點(diǎn)】環(huán)境人口容量的內(nèi)涵以及影響因素人口合理容量的影響因素以及措施二、說(shuō)教法【教學(xué)方法】案例分析、問(wèn)題探究、歸納總結(jié)

  • 人教版高中歷史必修1新中國(guó)初期的外交說(shuō)課稿2篇

    人教版高中歷史必修1新中國(guó)初期的外交說(shuō)課稿2篇

    四、教學(xué)過(guò)程1.導(dǎo)入新課(2分鐘)出示中非合作論壇暨第3屆部長(zhǎng)級(jí)會(huì)議圖片。用時(shí)事引起學(xué)生注意,設(shè)問(wèn),“55年前,亞洲與非洲有哪一次跨越印度洋的握手”,提示答案“萬(wàn)隆亞非會(huì)議”,給出答案導(dǎo)入新課2.外交環(huán)境:學(xué)生閱讀,教師分析。(3分鐘)3.外交方針之一:獨(dú)立自主的和平外交方針(5分鐘) 出示材料:《共同綱領(lǐng)》引文。學(xué)生、閱讀、提煉除新中國(guó)奉行獨(dú)立自主的外交政策。進(jìn)而由學(xué)生分析另起爐灶、打掃干凈屋子再請(qǐng)客和一邊倒。培養(yǎng)學(xué)生分析材料、利用材料的能力過(guò)度:新中國(guó)作出一邊倒大的積極主動(dòng)態(tài)勢(shì),社會(huì)主義陣營(yíng)的兄弟們也立刻作出了積極回應(yīng)。1949年10月2日,中蘇建立了外交關(guān)系。4.外交建樹(shù)之一:同蘇聯(lián)等17個(gè)國(guó)家建立外交關(guān)系(3分鐘)出示毛澤東訪問(wèn)蘇聯(lián)等圖片和第一批建交的17個(gè)國(guó)家名字

  • 人教版高中歷史必修2近代中國(guó)經(jīng)濟(jì)結(jié)構(gòu)的變動(dòng)說(shuō)課稿2篇

    人教版高中歷史必修2近代中國(guó)經(jīng)濟(jì)結(jié)構(gòu)的變動(dòng)說(shuō)課稿2篇

    1842年鴉片戰(zhàn)爭(zhēng)清政府戰(zhàn)敗,簽訂《南京條約》,以英國(guó)為首的外國(guó)資本主義開(kāi)始入侵,五口通商,協(xié)議關(guān)稅,西方商品輸入與日俱增,機(jī)器化大生產(chǎn)速度快,用政治經(jīng)濟(jì)學(xué)的觀點(diǎn)就是社會(huì)必要?jiǎng)趧?dòng)時(shí)間少,成本低,價(jià)格更加便宜,所謂物美價(jià)廉,市場(chǎng)競(jìng)爭(zhēng)力強(qiáng),材料:1845年,福州官員奏稱:洋貨“充積于廈口”。洋布、洋棉“其質(zhì)既美、其價(jià)復(fù)廉,民間之買(mǎi)洋布、洋棉者,十室而九?!币虼?,“江浙之棉布不復(fù)暢銷”。生:洋貨的輸入,土布土紗的銷售陷入困境,賣(mài)不出去,依靠它生活的手工業(yè)者就活不下去了,一部分棉紡織業(yè)手工者破產(chǎn)失業(yè),為了維持生計(jì),流入城市工廠,替別人打工,成為自由勞動(dòng)力;以前吃穿自己生產(chǎn),現(xiàn)在吃穿要買(mǎi),于是這部分手工業(yè)者從生產(chǎn)者變成了消費(fèi)者,有了消費(fèi)就有了市場(chǎng)。

上一頁(yè)123...363738394041424344454647下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專注素材下載!