(2)歷史課本中歷朝歷代的文化發(fā)展。(3)政治生活中關(guān)于綜合國力競爭的相關(guān)知識。(4)了解文化產(chǎn)業(yè)的發(fā)展,深入體會知識經(jīng)濟、文化經(jīng)濟現(xiàn)象。五、【方法點津】:(1)堅持理論聯(lián)系實際的方法,感悟文化現(xiàn)象,理解文化內(nèi)涵,分析文化的作用,增強文化學習的自覺性。(2)自學探究。以課本的簡單提示為線索,深入探究文化與經(jīng)濟、政治的相互交融,探究文化在綜合國力競爭中的地位和作用。(3)集體討論。針對當前國際競爭的實質(zhì),探討我國應如何發(fā)展文化產(chǎn)業(yè)、發(fā)展文化生產(chǎn)力、增強文化競爭力;討淪為更好地應對文化競爭,作為中學生目前應做好哪些準備。六、【課文導語】:文化,一個我們十分熟悉的詞匯。然而“熟知并非真知”。有人說,文化是知識;有人說,文化是藝術(shù)。究竟什么是“文化”?只要在社會生活中細細體味,我們就能真切地感悟“文化”的內(nèi)涵與文化的力量。
(三)教學重、難點1、教學重點:結(jié)合課文,了解演講辭針對性強、條理清楚、通俗易懂、適當?shù)母星樯实忍攸c。2、教學難點:深入理解文章內(nèi)涵,聯(lián)系現(xiàn)實,體會本文的現(xiàn)實意義二、說學情高中學生在初中階段已經(jīng)接觸過演講辭了,對演講詞的特點已經(jīng)有了一些基本的知識,因此本輪的教學應該讓他們在此基礎(chǔ)上有所提高。本文是學生在高中階段第一次接觸演講辭,有必要讓他們了解演講辭的特點及課文如何體現(xiàn)這些特點的。隨著年齡的增長,生活閱歷的增加,高中學生正逐漸形成自己對世界、對人生的看法,蔡元培先生的這篇文章能很好地激發(fā)他們對當前的高中學習和未來的大學生活進行思考。此外,學生對北大的歷史及蔡元培先生作這番演講的時代背景了解不深,應作出補充說明。
一、描述圓周運動的物理量 探究交流 打籃球的同學可能玩過轉(zhuǎn)籃球,讓籃球在指尖旋轉(zhuǎn),展示自己的球技,如圖5-4-1所示.若籃球正繞指尖所在的豎直軸旋轉(zhuǎn),那么籃球上不同高度的各點的角速度相同嗎?線速度相同嗎? 【提示】 籃球上各點的角速度是相同的.但由于不同高度的各點轉(zhuǎn)動時的圓心、半徑不同,由v=ωr可知不同高度的各點的線速度不同.
教師活動:(1)組織學生回答相關(guān)結(jié)論,小組之間互相補充評價完善。教師進一步概括總結(jié)。(2)對學生的結(jié)論予以肯定并表揚優(yōu)秀的小組,對不理想的小組予以鼓勵。(3)多媒體投放板書二:超重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實質(zhì):加速度方向向上。失重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實質(zhì):加速度方向向下。(4)運用多媒體展示電梯中的現(xiàn)象,引導學生在感性認識的基礎(chǔ)上進一步領(lǐng)會基本概念。4.實例應用,結(jié)論拓展:教師活動:展示太空艙中宇航員的真實生活,引導學生應用本節(jié)所學知識予以解答。學生活動:小組討論后形成共識。教師活動:(1)引導學生分小組回答相關(guān)問題,小組間互相完善補充,教師加以規(guī)范。(2)指定學生完成導學案中“思考與討論二”的兩個問題。
(六)說教學策略1.專題性海量的媒介信息必須加以選擇或者整合,以項目為依據(jù),進行信息篩選,形成專題性閱讀與交流;培養(yǎng)學生對文本信息“化零為整”的能力,提升跨媒介閱讀與交流學習的充實感。2.情境化情境教學應指向?qū)W生的應用,建構(gòu)富有符合時代氣息的內(nèi)容,與生活經(jīng)驗更加貼合,對學生的語言建構(gòu)與運用有所提升,在情境中能夠有效地進行交流。3.任務(wù)化以任務(wù)為導向的序列化學習,可以為學生構(gòu)建學習路線圖、學習框架等具體任務(wù)引導;或以跨媒介的認識與應用為任務(wù)的設(shè)置引導;甚至以閱讀和交流作為序列化安排的實踐引導。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實現(xiàn)對信息進行“深加工”,多種媒介的信息整合只為一個核心教學內(nèi)容服務(wù)。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學生對學習內(nèi)容立體化和具體化的感悟,提升學生的審美能力。
1.做學問之前首先學會做人2.知識文化修養(yǎng)和思想道德修養(yǎng)的關(guān)系三.追求更高的思想道德目標㈤ 說教學評價和反思:1.這節(jié)課主要是以學生為主體,老師為主導,讓學生充分發(fā)表自己的看法,把理論的知識結(jié)合在實際的日常生活中,鼓勵學生充分發(fā)表自己的意見,能調(diào)動學生學習的積極性,達到教學目的。這節(jié)課學生討論,發(fā)言的機會很多,但由于我校的學生的基礎(chǔ)薄弱,在發(fā)言時難免偏離老師引導的方向,甚至出現(xiàn)毫不相干的說法,由于本人經(jīng)驗不夠此時如何去引導他們可能做的還不夠好。2.新課程的教學,如何突破書本知識的局限,延伸更深層次的內(nèi)容是一個難題。本節(jié)課在知識的處理上,把道德的重要性與道德的層次兩個知識點補充了進去,目的是讓學生在學習之前有一個情感的鋪墊,從而更好地達到教學目標。
(3)改造主觀世界同改造客觀世界的關(guān)系。改造客觀世界同改造主觀世界,是相互聯(lián)系、相互作用的。改造主觀世界是為了更好地改造客觀世界,人們在改造客觀世界的同時也改造著自己的主觀世界。通過自覺改造主觀世界,又能提高改造客觀世界的能力。師:人們對自己的思想道德境界的追求,是永遠止境的。讓我們共同努力,在踐行社會主義思想道德的過程中,不斷追求更高的目標,像無數(shù)先輩那樣,加入到為共產(chǎn)主義遠大理想而奮斗的行列中吧!課堂小結(jié)通過本節(jié)課學習使我們認識到面對現(xiàn)實生活中的思想道德沖突,加強知識文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標的必要性;把握了知識文化修養(yǎng)與思想道德修養(yǎng)的含義及其相互關(guān)系;明確了我們應該和怎樣追求更高的思想道德目標;認識到這是一個永無止境的過程。我們要腳踏實地,從現(xiàn)在做起、從點滴小事做起,不斷提高知識文化修養(yǎng)和思想道德修養(yǎng),追求更高的思想道德目標。
由此引導學生的深思,學生通過合作探究,幫助學生認識到不注重思想道德修養(yǎng),即使掌握了豐富的科學知識,也難以避免人格上的缺失,甚至危害社會。進而總結(jié)出關(guān)系二:加強思想道德修養(yǎng),能夠促進科學文化修養(yǎng)??茖W文化修養(yǎng)的意義播放感動中國人物徐本禹先進事跡短片。學生觀看完視頻后,思考:從徐本禹的事跡中,我們可以了解到我們加強科學文化修養(yǎng)的根本意義是什么?引導學生結(jié)合自身體會,發(fā)表各自見解,在此基礎(chǔ)上幫助學生總結(jié)出,要使自己的思想道德境界不斷升華,為人民服務(wù)的本領(lǐng)不斷提高,成為一個真正有知識文化涵養(yǎng)的人,成為一個脫離低級趣味的人、有益于人民的人。知識點三:追求更高的思想道德目標根據(jù)教材110探究活動(思想道德的差異、反應人們世界觀、人生觀、價值觀的差異)思考:用公民的基本道德規(guī)范來衡量這些觀點,你贊成哪些觀點?反對哪些觀點?小組進行合作探究,引導學生根據(jù)公民基本道德規(guī)范對這些價值觀進行評析。
情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
環(huán)節(jié)三案例分析突出難點這一環(huán)節(jié),我將用多媒體展示我國反腐行動,將一個個貪污腐敗者給予法律制裁的案例和東突分子分裂活動的例子,來得出我國專政的職能。這些例子具有典型性和時效性,能讓學生容易從例子中得出知識點,引導學生理解我國的專政是對極少數(shù)敵人實行的專政。并通過《反分裂法》的制定,讓學生討論為什么我國既要實行民主職能又實行專政職能,以此來分析民主與專政的關(guān)系(區(qū)別和聯(lián)系)。培養(yǎng)學生獲取信息的能力,自主學習的能力以及全面看問題的能力,再結(jié)合教師的講授,給學生一種茅塞頓開的感覺。環(huán)節(jié)四 情景回歸 情感升華這一環(huán)節(jié),我將設(shè)置分組討論,讓學生們分別從人民民主專政的重要地位、“民主”與“專政”這兩項職能、改革開放的歷史條件下新時期內(nèi)容三個方面來分析為什么堅持人民民主是正義的事,討論后每組派出代表來發(fā)表各自組的結(jié)論,得出我國要堅持人民民主專政。通過小組討論,使學生學會在合作中學習,提高學生的語言表達和思維能力。